
Solid State Theory

Solution 6
FS 15

PD V. Geshkenbein

Problem 6.1 Specific Heat of a Semiconductor and Graphene

a) For kBT � Eg only the band edges are important, so we can approximate the energy
dispersion as

εv(k) = −~2k2

2mv

, (1)

εc(k) = Eg +
~2k2

2mc

, (2)

where mv,c are the effective masses in the two bands. The gap extends for energies
ε ∈ (0, Eg).

We start again by finding the dependence µ(T ) of chemical potential on temperature.
At zero temperature it is in the middle of the gap. For non-zero temperature it shifts.
To determine µ(T ) we consider the fixed density of particles, i.e.

0 = 2

∫
d3k

(2π)3
[1− f(εv(k);µ(T ), T )]− 2

∫
d3k

(2π)3
f(εc(k);µ(T ), T ) (3)

= 2

∫
d3k

(2π)3
1

e−[εv(k)−µ(T )]/kBT + 1
− 2

∫
d3k

(2π)3
1

e[εc(k)−µ(T )]/kBT + 1
. (4)

If we assume that kBT � µ and kBT � Eg − µ, then we can neglect the ”+1” in the
Fermi-Dirac distribution function and the previous equation simplifies to

0 = 2

∫
d3k

(2π)3
e[εv(k)−µ(T )]/kBT − 2

∫
d3k

(2π)3
e−[εc(k)−µ(T )]/kBT . (5)

Note that this corresponds to using Maxwell-Boltzmann statistics as for the ideal gas,
rather than the Fermi-Dirac statistics.

To proceed, we define the density of states in the valence and conduction bands. For
an isotropic dispersion εk = εk we have

D(ε) =
2

V

∑
k

δ(ε− εk) =
2

(2π)3

∫
d3k δ (ε− εk) (6)

=
8π

(2π)3

∫
dk k2 δ (ε− εk) =

1

π2

k2ε∣∣∂εk
∂k

∣∣
k=kε

, (7)

where we first went from a summation to an integral by approximating 1
V

∑
k ≈

1
(2π)3

∫
d3k, then transformed the integral to spherical coordinates, and finally used

that ∫
dxf(x) δ(g(x)) =

∑
x0

f(x0)

|g′(x0)|
, (8)

where x0 are the roots of g(x) and the prime indicates the first derivative.

Plugging the dispersions (1) and (2) into (7), we find specifically

Dv(ε) =
1

2π2

(
2mv

~2

) 3
2 √
−ε (9)

Dc(ε) =
1

2π2

(
2mv

~2

) 3
2 √

ε− Eg. (10)
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With these we can change integration over momenta to integration over energies. With
the help of integral ∫ ∞

0

√
xe
− x
kBT =

√
π

2
(kBT )

3
2 (11)

we easily find

0 =

∫ 0

−∞
dεDv(ε)e

[ε−µ(T )]/kBT −
∫ +∞

Eg

dεDc(ε)e
−[ε−µ(T )]/kBT (12)

=

(
1

2π2~3

){
(2mv)

3
2 e
−µ(T )
kBT

∫ 0

−∞
dε
√
−ε e

ε
kBT − (2mc)

3
2 e

(µ(T )−Eg)
kBT

∫ ∞
0

dε
√
ε e

ε
kBT

}
=

(
1

2π2~3

) √
π

2
(kBT )

3
2

{
(2mv)

3
2 e
−µ(T )
kBT − (2mc)

3
2 e

(µ(T )−Eg)
kBT

}
. (13)

From this it follows that

µ(T ) =
Eg
2

+
3

4
kBT log

(
mv

mc

)
. (14)

With the above results we can simplify the distribution function of electrons in the
conductance band as

fe(εc(k)) ≈ e−[Eg+
~2k2
2mc
−µ(T )]/kBT = e

− ~2k2
2mckBT e

− Eg
2kBT e

3
4
log(mvmc ) (15)

= e
− ~2k2

2mckBT e
− Eg

2kBT

(
mv

mc

) 3
4

(16)

and for the holes in the valence band similarly as

fh(εv(k)) ≈ e
− ~2k2

2mckBT e
− Eg

2kBT

(
mc

mv

) 3
4

. (17)

It will later be useful to know the number of electrons (which is equal to the number
of holes) excited at temperature T

ne(T ) ( = nh(T ) ) =

∫
d3k

4π3
e
− (εc−µ)

kBT (18)

=

∫
d3k

4π3
e
− ~2k2

2mckBT e
− Eg

2kBT

(
mv

mc

) 3
4

(19)

=
1

π2

∫ ∞
0

k2dke
− ~2k2

2mckBT e
− Eg

2kBT

(
mv

mc

) 3
4

(20)

=
1√
2

e
− Eg

2kBT

(
kBT

π~2

)3/2

(mvmc)
3/4 (21)

where in the second step we wend to spherical coordinates and in the last step we
performed Gaussian integration∫ ∞

0

dx x2e−ax
2

=

√
π

4a
3
2

. (22)
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We finally find the energy of the system at finite temperature. Energy of the electrons
in conduction band (per unit volume) is

ue(T ) =
1

π2

∫ ∞
0

k2dk εc(k)fe(εc(k)) (23)

=
1

π2

∫ ∞
0

k2dk

(
Eg +

~2k2

2mc

)
e
− ~2k2

2mckBT e
− Eg

2kBT

(
mv

mc

) 3
4

(24)

(21)
= Egne(T ) +

3

2
√

2
kBT

(
kBT

π~2

) 3
2

e
− Eg

2kBT (mcmv)
3/4 (25)

(21)
=

[
Eg +

3

2
kBT

]
ne(T ) (26)

where in the third line we used (22) and∫ ∞
0

dx x4e−ax
2

=
3
√
π

8a
5
2

. (27)

The energy of the holes in the valence band is

uh(T ) =
1

π2

∫ ∞
0

k2dk (−εc(k))fe(εc(k)). (28)

Its evaluation is completely analogous, the result is

uh(T ) =
3

2
kBTnh(T ). (29)

If we define the total carrier density n(T ) = ne(T ) + nh(T ), the total internal energy
density is

u(T ) =

[
3

2
kBT +

Eg
2

]
n(T ). (30)

Finally, the specific heat is

cV =
3

2
n(T )kB +

[
3

2
kBT +

Eg
2

]
∂n(T )

∂T
. (31)

We see that the specific heat of a semiconductor is given by a contribution similar to
the specific heat of an ideal gas of excitations that are already present in the system due
to thermal excitation, plus an additional contribution originating from the excitation
of new particle hole pairs ∼ ∂n(T )

∂T
.

It follows from (21) that

∂n(T )

∂T
=

(
3

2
+

Eg
2kBT

)
n(T )

T
, (32)

so we can rewrite the specific heat as

cV =

[
15

4
kB +

Eg
T

(
3

2
+

Eg
4kBT

)]
n(T ). (33)

Thus, the part of the specific heat originating from the excitation of additional particles
dominates over the ideal gas-like part for small temperatures!
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b) We first demonstrate that due to the perfect particle-hole symmetry in graphene
εv(k) = −εc(k), the chemical potential is fixed at µ = 0 at all temperatures. To
see this we write

ne =
1

(2π)2

∫
d2kf(εc(k)) =

1

(2π)2

∫
d2k

1

eβ(εc(k)−µ) + 1
(34)

nh =
1

(2π)2

∫
d2k[1− f(−εc(k))] =

1

(2π)2

∫
d2k

1

eβ(εc(k)+µ) + 1
. (35)

By comparing the previous two lines it is obvious that ne = nh if (and only if) µ = 0.
This is a great simplification!

For the density of states we have

D(ε) =
2 · 2
A

∑
~k

δ(ε− ε~k) (36)

where the spins lead to a degeneracy of 2 and the two equivalent Dirac points to
another degeneracy of 2 (valley degeneracy), and A denotes the area of the graphene
sheet.

Due to the symmetry of the band structure it is enough to consider the case ε > 0.
Again, we replace the sum by an integral and find

D(ε) =
4

(2π)2

∫
d2kδ(ε− ε~k) =

2

π

∫ ∞
0

k dkδ(ε− ~vFk) (37)

=
2

π~vF

∫ ∞
0

kdkδ

(
ε

~vF
− k
)

=
2

π(~vF)2
|ε|, (38)

which is linear in the energy.

We are ready to evaluate the internal energy u. We find

u(T )− u0 =

∫
dε εD(ε)f(ε)− u0 (39)

=
2

π(~vF)2

(∫ +∞

−∞
dε

ε|ε|
eβ(ε) + 1

−
∫ 0

−∞
dε ε|ε|

)
(40)

=
2

π(~vF)2

(∫ ∞
0

dε
ε2

eβε + 1
+

∫ 0

−∞
dε
−ε2

eβε + 1
+

∫ 0

−∞
dε ε2

)
(41)

=
2

π(~vF)2

(∫ ∞
0

dε
ε2

eβε + 1
+

∫ 0

−∞
dε

ε2

e−βε + 1

)
(42)

=
4

π(~vF)2β3

∫ ∞
0

dx
x2

ex + 1
(43)

=
4(kBT )3

π(~vF)2
3

2
ζ(3). (44)

where we used that ∫ ∞
0

dk
kn

ek + 1
=

(
1− 1

2n

)
Γ(n+ 1)ζ(n+ 1) (45)

for n > −1. The specific heat is

cV =

(
∂u

∂T

)
N,V

=
18ζ(3)kB
π(~vF)2

(kBT )2. (46)
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Problem 6.2 Spin Susceptibility of a Metal, a Semiconductor, and
Graphene

a) An external magnetic field H coupling to the electron spins s = ±1 (neglecting any
orbital effects) changes the energy according to

εk,s = εk − µBsH, (47)

where µB is the Bohr magneton. There are now two distinct Fermi-Dirac distribu-
tions and the number of electrons in each spin state is given by

ns(H) =

∫
dε

1

2
D(ε)f(εk,s). (48)

With the magnetization defined as

M = µB(n+ − n−), (49)

we immediately find

M = µB

∫
dε

1

2
D(ε) [f(ε− µBH)− f(ε+ µBH)] (50)

≈ µ2
BH

∫
dεD(ε)

(
−∂f
∂ε

)
(52)
≈ µ2

BHD(εF). (51)

In the very last step we used the Sommerfeld expansion (cf. lecture 6)

∞∫
−∞

dε
H(ε)

e(ε−µ)/kBT + 1
=

µ∫
−∞

dε H(ε) +
∞∑
n=1

an (kBT )2n
d2n−1H(ε)

dε2n−1

∣∣∣∣
ε=µ

(52)

where a1 = π2/6, a2 = 7π4/360, . . . .

The Pauli spin susceptibility is given by

χPauli =
∂M

∂H

∣∣∣∣
H=0

= µ2
BD(εF), (53)

i.e. in the leading order it is temperature independent.

b) As for the metal, we have

M ≈ µ2
BH

∫
dεD(ε)

(
−∂f
∂ε

)
. (54)

For the semiconductor, however, we have to be more careful with the derivative
because of the gap.

Neglecting excitons and other interactions, we simply model the semiconductor as
a paramagnetic ideal gas. Both the electron and the hole system are unpolarized
at zero applied field (same number of up and down spins in the thermally excited
electrons) and their contribution to the magnetization is the same, Mtot = Mh+Me.

Again using the approximation of ε� kBT , we simplify the expression(
−∂f
∂ε

)
=

βeβ(εc−µ)

(eβ(εc−µ) + 1)2
≈ βe−β(εc−µ) (55)
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and we find for the electrons in the conduction band

Me = µ2
BHβ

∫
d3k

4π3
e−β(εc−µ). (56)

But this is exactly the integral (18) we had before for the number of electrons. Using
n(T ) = nh(T ) + ne(T ) we can write immediately

Mtot = (Mh +Me) ≈ µ2
BHβn(T ) (57)

which gives

χPauli =

(
∂Mtot

∂H

∣∣∣∣
H=0

)
T,V,N

=
µ2
B

kB

n(T )

T
. (58)

This is like Curie’s law, reflecting the ideal gas behaviour of the semiconductor.
However, the particle density n(T ) is temperature dependent and decays exponen-
tially at low temperatures.

As a consequence, the major contribution to the susceptibility in semiconductors
stems from the diamagnetism of the ion cores. In doped semiconductors, however,
the conduction electron diamagnetism can be dominant.

c) We start again with

M ≈ µ2
BH

∫
dεD(ε)

(
−∂f
∂ε

)
. (59)

We shall only calculate the contribution from electrons in the conduction band. Due
to the perfect particle-hole symmetry the contribution of holes in the valence band
will be identical, Mh = Me. We find using the result (38) for the density of states
in graphene

Me ≈ µ2
BH

2

π(~vF)2

∫ ∞
0

dε ε
βeβε

(eβε + 1)2
(60)

= µ2
BH

2

π(~vF)2β

∫ ∞
0

dx
x ex

(ex + 1)2
(61)

= µ2
BH

2

π(~vF)2β

∫ ∞
0

dt
t

cosh2 t
(62)

= µ2
BH

2

π(~vF)2β
log 2. (63)

where in the second line we substituted x = βε and in the third line t = x/2. In
the last line we used that∫

dt
t

cosh2 t
= − log[cosh(t)] + t tanh t. (64)

The total magnetization is twice the result (63) and the Pauli spin susceptibility
thus is

χPauli = µ2
B

4 log 2

π(~vF)2
kBT. (65)

Note that in real graphene, the susceptibility due to Landau diamagnetism of free
electrons and holes is dominant.
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