Problem 5.1 One-Dimensional Model of a Semiconductor

The Hamilton operator is $H_{1}=H_{0}+V$ where

$$
\begin{align*}
H_{0} & =-\mathrm{t} \sum_{i}\left(c_{i}^{\dagger} c_{i+1}+c_{i+1}^{\dagger} c_{i}\right), \tag{1}\\
V & =v \sum_{i}(-1)^{i} c_{i}^{\dagger} c_{i} \tag{2}
\end{align*}
$$

(a) Let us consider the case $v=0$. We write

$$
\begin{equation*}
c_{j}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{k} e^{i k j} c_{k}^{\dagger}, \quad c_{j}=\frac{1}{\sqrt{N}} \sum_{k} e^{-i k j} c_{k} \tag{3}
\end{equation*}
$$

where $k \in[-\pi, \pi)$ and $k N=2 \pi n, n \in \mathbb{Z}$, and $\mathrm{a}=1$. The above expression is plugged into Eq. (1) and we obtain

$$
\begin{align*}
H_{0} & =-\frac{\mathrm{t}}{N} \sum_{k, k^{\prime}, j}\left(e^{i\left[k j-k^{\prime}(j+1)\right]}+e^{i\left[k(j+1)-i k^{\prime} j\right]}\right) c_{k}^{\dagger} c_{k^{\prime}} \tag{4}\\
& =-\mathrm{t} \sum_{k, k^{\prime}} c_{k}^{\dagger} c_{k^{\prime}}\left(e^{-i k^{\prime}}+e^{i k}\right) \underbrace{\frac{1}{N} \sum_{j} e^{i\left(k-k^{\prime}\right) j}}_{\delta_{k, k^{\prime}}}=\sum_{k} \underbrace{(-2 \mathrm{t} \cos k)}_{\epsilon_{k}} c_{k}^{\dagger} c_{k}, \tag{5}
\end{align*}
$$

where we have made use of the Bravais sum. ${ }^{1}$
Let us define the following one-particle state: $\left|\phi_{k}\right\rangle=c_{k}^{\dagger}|0\rangle$ where $|0\rangle$ is the vacuum. It fulfills

$$
\begin{equation*}
c_{k}^{\dagger} c_{k}\left|\phi_{k}\right\rangle=c_{k}^{\dagger} c_{k} c_{k}^{\dagger}|0\rangle=c_{k}^{\dagger}\left(1-c_{k}^{\dagger} c_{k}\right)|0\rangle=c_{k}^{\dagger}|0\rangle=\left|\phi_{k}\right\rangle, \tag{6}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
H_{0}\left|\phi_{k}\right\rangle=\epsilon_{k}\left|\phi_{k}\right\rangle . \tag{7}
\end{equation*}
$$

Therefore, $\left|\phi_{k}\right\rangle$ is an eigenstate of the Hamilton operator. A similar procedure may be performed also with many-particle states $c_{k_{1}}^{\dagger} c_{k_{2}}^{\dagger} \ldots c_{k_{n}}^{\dagger}|0\rangle$.
(b) Let's consider now the case $v \neq 0$. Again, the expression (3) is plugged into V :

$$
\begin{equation*}
V=v \sum_{k, k^{\prime}}[\underbrace{\frac{1}{N} \sum_{j} e^{i \pi j} e^{i\left(k-k^{\prime}\right) j}}_{\delta_{k, k^{\prime}+\pi}}] c_{k}^{\dagger} c_{k^{\prime}} \tag{8}
\end{equation*}
$$

where we have used the identity $(-1)^{j} \equiv e^{i \pi j}$ (for integer j). It follows that

$$
\begin{equation*}
H_{1}=\sum_{k \in[-\pi / 2, \pi / 2]}^{\prime}\left(\epsilon_{k} c_{k}^{\dagger} c_{k}+\epsilon_{k+\pi} c_{k+\pi}^{\dagger} c_{k+\pi}+v c_{k}^{\dagger} c_{k+\pi}+v c_{k+\pi}^{\dagger} c_{k}\right) . \tag{9}
\end{equation*}
$$

[^0]From now on we will work only in the reduced Brillouin zone ($k \in[-\pi / 2, \pi / 2]$), for which the notation \sum^{\prime} stands. Note that

$$
\begin{equation*}
\epsilon_{k+\pi}=-2 \mathrm{t} \cos (k+\pi)=2 \mathrm{t} \cos k=-\epsilon_{k} . \tag{10}
\end{equation*}
$$

Introducing

$$
\begin{equation*}
\bar{c}_{k}=\binom{c_{k}}{c_{k+\pi}} \tag{11}
\end{equation*}
$$

the Hamilton operator is written in matrix form

$$
\begin{equation*}
H_{1}=\sum_{k}^{\prime} \bar{c}_{k}^{\dagger} \hat{H}_{1} \bar{c}_{k} \tag{12}
\end{equation*}
$$

where

$$
\hat{H}_{1}=\left(\begin{array}{cc}
\epsilon_{k} & v \tag{13}\\
v & -\epsilon_{k}
\end{array}\right)
$$

We define new operators a_{k} and b_{k} according to

$$
\begin{align*}
\bar{c}_{k}=\binom{c_{k}}{c_{k+\pi}} & =\left(\begin{array}{cc}
u_{k} & v_{k} \\
v_{k} & -u_{k}
\end{array}\right)\binom{a_{k}}{b_{k}}=U \bar{\alpha}_{k}, \tag{14}\\
H_{1} & =\sum_{k}^{\prime} \bar{\alpha}_{k}^{\dagger} U^{\dagger} \hat{H}_{1} U \bar{\alpha}_{k} . \tag{15}
\end{align*}
$$

We can choose U such that $U^{\dagger} \hat{H}_{1} U$ is diagonal. The energies are obtained from the secular equation

$$
\operatorname{det}\left(\begin{array}{cc}
\epsilon_{k}-\lambda & v \tag{16}\\
v & -\epsilon_{k}-\lambda
\end{array}\right)=\lambda^{2}-\epsilon_{k}^{2}-v^{2}=0
$$

which has the solutions

$$
\begin{equation*}
\lambda= \pm \sqrt{\epsilon_{k}^{2}+v^{2}}= \pm E_{k} \tag{17}
\end{equation*}
$$

Furthermore, one finds

$$
\begin{equation*}
u_{k}=\frac{v}{\sqrt{2 E_{k}\left(E_{k}+\epsilon_{k}\right)}}, \quad \quad v_{k}=-\sqrt{\frac{E_{k}+\epsilon_{k}}{2 E_{k}}} \tag{18}
\end{equation*}
$$

Finally, the Hamilton operator is written in the eigenbasis

$$
\begin{equation*}
H_{1}=\sum_{k}^{\prime}\left(-E_{k} a_{k}^{\dagger} a_{k}+E_{k} b_{k}^{\dagger} b_{k}\right) \tag{19}
\end{equation*}
$$

(c) The band structure of the alternating chain is shown in Fig. 1. The gap between valence and conduction band is $\Delta=2 E_{ \pm \pi / 2}=2 v$. The ground state for $N / 2$ electrons on the chain is given by

$$
\begin{equation*}
|\Omega\rangle=\prod_{k=-\pi / 2}^{\pi / 2} a_{k}^{\dagger}|0\rangle \tag{20}
\end{equation*}
$$

Compared to a) where we had a half filled band, we now have one fully filled band (due to the Brillouin zone reduction) with a finite gap for all kinds of excitations.

Figure 1: The two bands of the alternating chain.

[^0]: ${ }^{1}$ A more precise form of the Bravais sum is $\sum_{j} e^{i\left(k-k^{\prime}\right) j}=N \delta_{k, k^{\prime}+G}$, where G may be an arbitrary reciprocal lattice vector (in our case $G=2 n \pi$). Thus, by restricting ourselves to the first Brillouin zone we obtain the result quoted in the main text.

