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Problem 13.1 Susceptibility from the atomic and conduction electrons

In Lecture 24, we found that the Landau diamagnetic susceptibility and the Pauli para-
magnetic susceptibly of the conduction electrons are given by

χLandau = −1

3
χPauli = −1

3
µ2
BN(εF ), (1)

where µB = e~
2mc

(Bohr magneton) is the magnetic dipole of a bound electron with angular
momentum ~. N(εF ) is the density of states at the fermi energy. The total magnetic
susceptibility of the conduction electrons is then

χc.e. = χLandau + χPauli =
2

3
µ2
BN(εF ) (2)

Moreover, the density of states at the fermi surface of a 3D isotropic system written in
terms of the electron density nc of conduction electrons and the fermi energy εF as

N(εF ) =
3

2

nv
εF
, (3)

where nv is the density of the valence electrons. Therefore,

χc.e. =
µ2
B

εF
nc. (4)

On the other, hand, we found that the Langevin susceptibility of the core electrons is

χLangevin = − e2

6mc2
nc〈r2〉, (5)

where nc is the density of the core electrons. Using the definition of the Bohr magneton,
we can re-write this equation as

χLangevin = −µ2
B

2m

3~2
nv〈r2〉 (6)

= −1

3

µ2
B

εF
nv〈k2fr2〉 (7)

Comparing the two expressions and noting that nv/nc = Zv/Zc, we obtain

χLangevin
χc.e.

= −1

3

Zc
Zv
〈(kfr)2〉 (8)

Note that the total magnetic susceptibility is then given by

χLangevin + χc.e. = χc.e.

(
1− 1

3

Zc
Zv
〈(kfr)2〉

)
. (9)

Therefore, an electron system is more likely to be diamagnetic as it has more closed shell
electrons (i.e. as we go down the periodic table). A famous example is copper.
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Problem 13.2 de Haas-van Alphen effect

The de Haas - van Alphen effect is observable under high magnetic field satisfying

T ≤ µBB � µ, (10)

where µ is the chemical potential and µB is the Bohr magneton. Writing the free energy
by means of the Poisson formula

1

2
F (0) +

∞∑
n=1

F (n) =

∫ ∞
0

F (x)dx+ 2R
∞∑
k=1

∫ ∞
0

F (x)e2πikxdx, (11)

where R stands for the real part. To obtain Eq. 11, we multiplied the Poisson equation

∞∑
n=−∞

δ(x− n) =
∞∑

k=−∞

e2πikx, (12)

by the free energy F (x) and integrated from 0 to ∞ on both sides. Thus, we obtain

F = F0(µ) +
TmV

π2~3
R
∞∑
k=1

Ik, (13)

with

Ik = −2µBB

∫ ∞
−∞

∫ ∞
0

ln

[
1 + exp

(
µ

T
− p2z

2mT
− 2xµBB

T

)]
e2πikxdxdpz, (14)

and F0(µ) is the thermodynamic potential in the absence of the field. The factor 2µBBmV/(π
2~3)

is related to the number of states for the interval dpz. Using the substitution

ε→ p2z
2m
− 2xµBB,

we arrive at

Ik = −
∫ ∞
−∞

∫ ∞
0

ln

[
1 + exp

(
µ− ε
T

)]
exp

(
πikε

µBB

)
exp

(
−i πkp2z

2mµBB

)
dεdpz, (15)

where the lower limit for the dε integral is taken to be 0 because the most significant
contribution to the integral is from ε near µ. For the dpz integral the most important
values are p2z/2m ≈ µBB. Now evaluating the gaussian pz integral by means of∫ ∞

−∞
e−iαp

2

dp = e−iπ/4
√
π

α
(16)

we have

Ik = −e−iπ/4
√

2mµBB

k

∫ ∞
0

ln[1 + e(µ−ε)/T ] exp

(
i
πkε

µBB

)
dε. (17)

Next, we integrate twice by parts using∫
udv + vdu = uv,
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with
u→ ln[1 + e(µ−ε)/T ],

and

dv → exp

(
i
πkε

µBB

)
.

Substituting η → (ε− µ)/T to obtain

Ik =

√
2m

Tπ2

(
µBB

k

)5/2

exp

(
iπkµ

µBB
− iπ

4

)∫ ∞
−∞

eη

(1 + eη)2
exp

(
iπkT

µBB
η

)
dη, (18)

where we replaced the lower limit of the integral from −µ/T to infinity by the assumption
µ� T . The η integration can be carried out with the help of the identity∫ ∞

−∞

eη

(1 + eη)2
exp (iαη)dη =

πα

sinh (πα)
. (19)

The above identity is obtained by the substitution u = 1/(eη + 1) and noticing that the
resulting expression can be written using beta functions∫ 1

0

(1− u)iαu−iα = Γ(1 + iα)Γ(1− iα)/Γ(2) =
iπα

i sinhπα
(20)

And we finally obtain the formula for the part of free energy which oscillates with the
magnetic field

F̃ =

√
2(mµBB)3/2TV

π2~3
∞∑
k=1

cos
(
πµk
µBB
− 1

4
π
)

k3/2 sinh
(
π2kT
µBB

) . (21)

To obtain the magnetisation we only integrate the most rapidly varying parts of Ω̃, which
are the cosines in the numerators

M̃ = −
√

2µB(m)3/2µTV

π~3
√
B

∞∑
k=1

sin
(
πµk
µBB
− 1

4
π
)

k1/2 sinh
(
π2kT
µBB

.
) . (22)

As we saw in the lecture, the frequency of this function is at a given magnetic field is
independent of temperature. However, also notice that the amplitude is exponentially
small for µbB � T .
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