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Problem 13.1 Susceptibility from the atomic and conduction electrons

In Lecture 24, we found that the Landau diamagnetic susceptibility and the Pauli para-
magnetic susceptibly of the conduction electrons are given by
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XLandau = _§XPauli = _g,UQBN(GF)a (1)

where up = 22’26 (Bohr magneton) is the magnetic dipole of a bound electron with angular

momentum h. N(ep) is the density of states at the fermi energy. The total magnetic
susceptibility of the conduction electrons is then
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Xec.e. = XLandau + XPauli = §N2BN<€F) (2>

Moreover, the density of states at the fermi surface of a 3D isotropic system written in
terms of the electron density n. of conduction electrons and the fermi energy e as
3 Ny,

N(ep) = 2ep (3)

where n, is the density of the valence electrons. Therefore,
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Xce. = _Bnc- (4)
€r

On the other, hand, we found that the Langevin susceptibility of the core electrons is
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ne(r’), ()

X Langevin = — c
g 6mc?

where n. is the density of the core electrons. Using the definition of the Bohr magneton,
we can re-write this equation as
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X Langevin = _N2B 372 Ty <T2> (6>
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Comparing the two expressions and noting that n, /n. = Z,/Z., we obtain

X Langevin 1 Zc
X—g = —§7<(kf7’)2> (8)

Note that the total magnetic susceptibility is then given by

X Langevin + Xece. = Xecee. (1 - gi((kfr>2>> . (9>

Therefore, an electron system is more likely to be diamagnetic as it has more closed shell
electrons (i.e. as we go down the periodic table). A famous example is copper.



Problem 13.2 de Haas-van Alphen effect
The de Haas - van Alphen effect is observable under high magnetic field satisfying

T < ppB < p, (10)

where p is the chemical potential and pp is the Bohr magneton. Writing the free energy
by means of the Poisson formula

0)+> F(n)= /OOO F(z)dz +2R) /Ooo F(z)e*™ 2y, (11)

where R stands for the real part. To obtain Eq. 11, we multiplied the Poisson equation
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Y x—n)= ) (12)

n=-—0oo k=—o00

by the free energy F'(x) and integrated from 0 to oo on both sides. Thus, we obtain
TmV
F = Fo(u) + —5p5 RZIR, (13)

with
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and Fy(u) is the thermodynamic potential in the absence of the field. The factor 2up BmV/(m?h?)
is related to the number of states for the interval dp,. Using the substitution
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we arrive at
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where the lower limit for the de integral is taken to be 0 because the most significant
contribution to the integral is from e near p. For the dp, integral the most important
values are p?/2m ~ upB. Now evaluating the gaussian p, integral by means of

4 2 B [*® k
Iy = —e ™4 %/ In[1 + e#= 9T exp <i;B;)de. (17)
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Next, we integrate twice by parts using

we have

/udv + vdu = uv,



with
u — In[1 + P9/,

o — ( ke )
v—exp|i .
P upB

and

Substituting n — (¢ — p)/T" to obtain
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where we replaced the lower limit of the integral from —p /T to infinity by the assumption
> T'. The n integration can be carried out with the help of the identity

> e’ To
- ; dn = —. 1
/ (g omz P liam)dn = 25 (19)

The above identity is obtained by the substitution u = 1/(e” 4+ 1) and noticing that the
resulting expression can be written using beta functions
1T

/0 (1 — wy®u= = T(1 + ia)T(1 — ia)/T(2) = (20)

1 sinh o
And we finally obtain the formula for the part of free energy which oscillates with the
magnetic field

oo mpk 1
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To obtain the magnetisation we only integrate the most rapidly varying parts of 2, which
are the cosines in the numerators

1

. Tk
i g (m)32uTV & Sin (;g— — 17r>
7h3vVB = k1/2sinh <M> .
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As we saw in the lecture, the frequency of this function is at a given magnetic field is

independent of temperature. However, also notice that the amplitude is exponentially
small for B < T



