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Problem 12.1 Cyclotron mass

The cyclotron mass is defined as

ωc =
eB

mHc
. (1)

In Lec. 23, we showed that

m∗
H =

∂S

2π∂ε
, (2)

where S is the area enclosed by the cyclotron orbit and ε is energy. The semi-classical
equations of motion (see Lec. 23), define the cyclotron orbit as the cross-section of the
Fermi surface on a plane perpendicular to the magnetic field.
Consider a 3D dispersion relation which can be written as a quadratic form plus a constant

εk = const.+Mαβkαkβ. (3)

The mass tensor Mαβ = ~2/2mαβ can always be transformed to a diagonal form and as
we are working along the high symmetry axis only this is not a problem.

εk = const.+Mxk
2
x +Myk

2
y +Mzk

2
z . (4)

The equal energy surfaces of this dispersion relation are ellipsoids with semi-principle axes
of length

ki(ε) =

√
ε

Mi

i = {x, y, z}. (5)

Then for a magnetic field oriented along one of the semi-principle axes (say ~B = Bẑ) of
the ellipsoid induces a cyclotron motion that encloses an area

S = πkx(ε)ky(ε) ∝
ε√

MxMy

. (6)

As a result, the cyclotron mass is

m∗
H =

∂S

2π∂ε
=

~2√
4MxMy

=
√
mxmy (7)

On the other hand, in 3D the specific heat is given by

Cv =
π3

3
k2TN(εF ), (8)

where N(εF ) is the density of states at the fermi surface. Because the density of states is
proportional to the number of states per volume with respect to energy. Since the volume
of the ellipsoid fermi surface is proportional to

√
mxmymz(ε)

3/2.
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Therefore,

CV ∝
√
mxmymz(ε)

1/2. (9)

Comparing this result to the one for electronic specific heat for a 3D system with isotropic
spectrum

Ciso
V ∝ (m∗)3/2(ε)1/2,

the effective mass for an anisotropic system can be defined as

m∗
(ani) = (mxmymz)

1/3 (10)

The important distinction is that the effective mass in the specific heat expression is
symmetric with respect to any permutation of indices x, y, z, whereas the effective mass
does not have such a symmetry as the magnetic field does not cause any response along
its direction.

Problem 12.2 Magnetoresistance in the two-band model

We have carriers in two different bands, the applied electric field is the same but their
contribution to the current will be different and given by

E =
1

σi
Ji +

βi
σi
H× Ji. (11)

Where σ is the conductivity and R = β/σ is the Hall coefficient. We can invert this by
first taking its crossproduct with H giving:

H× E =
1

σi
H× Ji −

βiH
2

σi
Ji (12)

and then combining both equations to give:

Ji =
1

1 + β2
iH

2
(E− βiH× E) (13)

which can also be inverted back to the original form in a similar fashion.
We now have an expression for the total current

J = J1 + J2 (14)

as a function of applied electric and magnetic field. This can again be inverted to give:

E =
1

σ(1 + β2H2)
(J + βH× J) (15)

where

σ =
σ1

1 + β2
1H

2
+

σ2
1 + β2

2H
2

(16)

and

β =
1

σ

(
σ1β1

1 + β2
1H

2
+

σ2β2
1 + β2

2H
2

)
(17)

2



For low magnetic field we obtain relatively easily the hall coefficient

R =
σ1β1 + σ2β2
(σ1 + σ2)2

=
σ2
1R1 + σ2

2R2

(σ1 + σ2)2
. (18)

Finding the magnetoresistance is more tricky as we then have

ρ =
1

σ(1 + β2H2)
(19)

which we have to contrast with the H = 0 case

ρ0 =
1

σ1 + σ2
. (20)

After some algebraic manipulations we obtain a formula comparing them:

∆ρ

ρ0
=
ρ− ρ0
ρ0

=
σ1σ2(β1 − β2)2H2

(σ1 + σ2)2 +H2(β1σ1 + β2σ2)2
(21)

The magnetoresistance is a positive quantity that vanishes only if β1 = β2 though this
must not necessarily mean that the two carriers are the same.
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