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Problem 10.1 Reflectivity of semiconductors

One can calculate the reflectivity of the material using the real(εr) and imaginary(εi) parts
of the dielectric function. To this end, one defines the complex index of refraction as

N(ω) =
√
ε(ω) =

κ1(ω)

k
+
iλ(ω)

k
, (1)

where k = ω/c. Expressing λ and κ in terms of the real and the imaginary parts of the
dielectric function, we have

κ(ω)

k
=

1√
2

√
εr(ω) +

√
ε2r (ω) + ε2i (ω) (2)

λ(ω)

k
=

1√
2

√
−εr(ω) +

√
ε2r (ω) + ε2i (ω). (3)

The reflectivity is given by the standard formula

R(ω) =
(κ(ω)− k)2 + λ2(ω)

(κ(ω) + k)2 + λ2(ω)
. (4)

Moreover, since the conductivity and the dielectric function are related as (Lecture 18)

ε(ω) = 1 +
4πiσ(ω)

ω
. (5)

one can calculate reflectivity using conductivity. In this exercise, we calculate conductivity
using classical equations of motion of a single charged particle in the presence of a time-
dependent electric field and harmonic confinement potential.
The force acting on a particle in a semiconductor is now given by

F (t) = qE(t)− p(t)

τ
−mω2

0r(t) (6)

leading to the equation of motion

mr̈(t) = qE(t)− mṙ(t)

τ
−mω2

0r(t) , (7)

or in Fourier space

−mω2r(ω) = qE0 +
iωm

τ
r(ω)−mω2

0r(ω) . (8)

Solving for r(ω) leads to

r(ω) =
q

m(ω2
0 − ω2 − iω/τ)

E0 . (9)

Using v(ω) = −iωr(ω) and j = nqv, we obtain the conductivity

σ(ω) =
nq2τ

m

1

1− iωτ (1− (ω0/ω)2)
=
ω2
p

4π

τ

1− iωτ (1− (ω0/ω)2)
. (10)
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For the reflectivity we still keep the parameter ε∞ to describe the inner shells of the
semiconductor. The real and imaginary parts of the dielectric function are given by

εr = ε∞ −
ω2
pτ

2(1− (ω0/ω)2)

1 + [ωτ(1− (ω0/ω)2)]2
, (11a)

εi =
ω2
pτ/ω

1 + [ωτ(1− (ω0/ω)2)]2
. (11b)

The results are shown in Fig. 1. We note that the region of strong reflectivity shifts
from around ω = 0 to a narrow range around the frequency of the harmonic potential,
ω0. This effect can only be observed for sufficiently clean systems, where τωp � 1. If we
now considered multiple harmonic potentials for the different orbitals, this would lead to
multiple such resonance lines that could be observed in the reflectivity.

Figure 1: Frequency dependence of the reflectivity for a semiconductor with ε∞ = 20 and
ω0 = 1

2
ωp.

Problem 10.2 Frequency dependence of conductivity

To calculate the frequency dependence of conductivity in a spatially homogeneous system
(i.e., ∂f

∂r
= 0), we use the Boltzmann transport in relaxation-time approximation,

−iωδf(k, ω)− eE(ω)

~
∇kf0(k) = −δf(k, ω)

τ(εk)
, (12)
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where f(k, r, t) = f0(k, r, t) + δf(k, r, t), and

f(k, t) =

∫ ∞
−∞

dω

2π
f(k, ω)e−iωt and E(k, t) =

∫ ∞
−∞

dω

2π
E(k, ω)e−iωt. (13)

Solving Eq. 12 for δf(k, ω), we obtain 1

δf(k, ω) =
τ

(1− iωτ)
e(E(ω) · vk)

∂f0
∂ε

, (14)

which is the same equation as the one derived for δf(k, 0) in Lecture 19, up to a substi-
tution

1

τ
→ 1

τ
− iω .

Therefore, the conductivity for the isotropic Fermi surface is given by

σ =
e2

3
N(εF )|vF |2

τ

1− iωτ
. (15)

Problem 10.3 Umklapp processes

The appearance of resistance due to electron-electron scattering is not quite obvious. The
reason is that while the slowing down of electrons due to resistance implies a change in
the total momentum of electrons, Coulomb interaction preserves total momentum in a
translationally invariant system.
However, in a crystal the continuous translational symmetry is reduced to that of discrete
lattice translations. As a result, the quasi-momentum is conserved only up to ~K, where
K is a reciprocal lattice vector

k1 + k2 − k3 − k4 = K. (16)

Above k1, k2 and k3, k4 are the momenta of the initial and the final electrons, respectively.
Therefore, in an Umklapp process the initial and final pair of electrons live in different
Brillouin zones.
Supposing that the magnitude of the initial momentum k1 is close the Fermi surface,
energy conservation implies that the remaining momenta should also live close to the
Fermi surface. Thus, the condition for the Umklapp processes becomes

max(k1 + k2 − k3 − k4) = 4 max |kF(n)| > |Kmin|, (17)

where Kmin is the shortest reciprocal lattice vector, and n are possible directions of kF .
Obviously, for materials where the Fermi surface extends to the edge of the Brillouin zone,
the above condition is satisfied.
In fact, even in alkali metals where the Fermi surface never extends to the edge of the
Brillouin zone the condition for Umklapp processes is satisfied. Since alkali metals have
only a single electron in their valence band, the Fermi surface has half the volume of
the first Brillouin zone. Moreover, all alkali metals crystallize in the bcc lattice. We
denote the length of a side of the conventional unit cell with a and the lenght of the
corresponding reciprocal lattice vector is |K| = 2π

a
. Since the conventional unit cell

includes two equivalent atoms, the volume of the primitive cell is a3/2 and the volume of
the Brillouin zone is 2|K|3. Using the periodicity of the Brillouin zone (

√
2|K|), we find

that the condition for the Umklapp process is satisfied,

4π|kF |3

3
=

2

2
|K|3 → |kF | =

(
3

4π

)(1/3)

|K| = 0.620|K| >
√

2

4
K (18)

1Since we are only considering the linear response in E; and δf ∝ |E| by assumption, the second term
in Eq. 12, involves only f0(k) and not f(k).
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