
Lecture 22

Weak Localization. Variable range hopping

Quantum corrections to the conductivity

Qualitative picture (for experimentalists!)
Let us start from the Drude formula σ = ne2τ/m. Consider a good conductor
with the electron wavelength λ ≪ l and low temperature T → 0. The
probability for electron to go from point A to point B is given by the square
of modulus of the sum of all amplitudes:
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The first term in the Eq. (1) is the sum of the probabilities and corresponds
to the classical Boltzmann approach. The last one describes the interference
between the different trajectories. For most paths interference is not impor-
tant since they have different length and acquire random phases
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There are, however, special self-intersecting paths like A4 from the point C.

For returning to the same point there are al-
ways two trajectories corresponding to the op-
posite directions of going around the loop.

In the presence of time reversal symmetry these two amplitudes are coherent
and W = |A1|2+|A2|2+2A1A

∗
2 = 4|A1|2, that is twice more than the classical

result of adding two probabilities. As a result of interference the probability
of return to the origin is enhanced. Then the probability to go to another
point is reduced and one gets decrease of conductivity.
To estimate correction to the conductivity we should sum over all possible
self-intersections of the classical paths. For classical point the thickness of
the path is zero and self-intersection is not possible in 3d case. For electron
one should consider its trajectory as a tube of radius λ ∼ 1/kF . To return to
the origin within the time dt means to be inside the volume dV ∼ vdtλd−1,
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v is electron velocity. During the time t particle can diffuse to the volume
VD ∼ (Dt)d/2, D = v2τ/d - diffusion coefficient. The probability of self-
crossing is

∫

dV/VD,

δσ

σ
= −

τϕ
∫

τ

vdtλd−1

(Dt)d/2
(2)

Here τ is the transport time and τϕ is the time during which phase coherence
is preserved. Integrating Eq.(2) gives

δσ ∼ −e2
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(3)

Two or one dimensions mean that transverse sizes are smaller than Lϕ. For

high frequency ωτϕ ≫ 1, Lϕ should be replaced by Lω =
√

D/ω. The
corrections (3) although small in λ/l govern the frequency and temperature
dependence of the conductivity (since τϕ ∼ T−p). Even in 3d δσ ∼ −√

ω.
In coherent conductor Lϕ → ∞. Divergence of these corrections in 1 and 2d
cases gives good arguments for the scaling theory of localization.

Physical meaning of τϕ
It is the time during which the wave function retains its coherence. As an
example consider some kind of inelastic scattering with typical energy trans-
fer ωin and mean time between collisions τin. Change in energy during the
time t is ∆ε(t) ∼ ωin

√

t/τin. Change in phase ~∆ϕ(t) ∼ ∆ε(t)t ∼ ωt
√

t/τin.
τϕ is determined from the condition ∆ϕ(τϕ) ≃ 1, thus τϕ ∼ (~2τin/ω

2
in)

1/3.
Energy relaxation time is determined from ∆ε(τε) ≃ ε then τε ∼ τin(ε/ωin)

2.
For ε ≫ ωin, τε ≫ τϕ. For ε < ωin and ωin > ~/τin τϕ ∼ τε ∼ τin. In general
τϕ is the shortest inelastic relaxation time.

Everything that destroys time reversal symmetry - reduces quantum cor-
rections (e.g. magnetic field or spin orbital scattering). Consider effect of
magnetic field. Traveling along the closed path electron’s wave function ac-
quires an additional phase factor,

Ψ → Ψexp

(
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)

,

where Φ◦ = π~c/e is superconducting flux quantum. The typical area S of
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the loop is ∼ Dt, thus one should cut off the interference correction on τB
given by DτBB ∼ Φ◦, or τB ∼ Φ0/DB. Replacing τφ by τB we obtain the
field dependent corrections to conductivity

σ(H)− σ(0) ∼ e2

~

{

ln(eBDτφ/~c) d = 2
(

eB
~c

)1/2
d = 3.

(4)

This leads to the negative magneto-resistance. In 3d it is independent on the
angle between I and B. In 2d it is strongly anisotropic, determined by the
orthogonal component of the field. Another consequence of the interference
effect are oscillation of the resistivity of the thin hollow cylinder in parallel
magnetic field. The period of these oscillations is the superconducting flux
quantum. Φ◦ = hc/2e.

This is due to the fact that the phase difference
between the waves traveling clockwise and an-
ticlockwise is ∆ϕ = 2πΦ/Φ◦.

Predicted by B. L. Altshuler, A. G. Aronov and B. Z. Spivak (1981), measured
by D. Yu. Sharvin and Yu. V. Sharvin (1982).

Variable range hopping

N. F. Mott (1968). Let us consider conductivity in the localized regime. At
T = 0 the states below the Fermi level are localized and σ(T = 0) = 0. At
T > 0 conductivity is non zero due to thermal activation. For activation to
the mobility edge we obtain

σ ∝ exp[−(Em − EF )/T ].

However if we are not too close to mobility edge conductivity can appear due
to thermally activated tunneling from one localized state to another.
Consider the system with the density of states N(E). The typical level
spacing in the volume Rd is

∆ε ∼ 1/N(EF )R
d. (5)

3



FE

Thus within the distance R the nearest
free state is ∼ ∆ε higher in energy.

R

In order to go to this state electron has to acquire energy ∆ε (from phonons)
and tunnel over distance R. Then the probability is

P ∝ exp

[

−∆ε

T
− 2R

Lc

]

,

where Lc is localization length. Substituting ∆ε(R) we obtain

P ∝ exp

[

− 1

TN(EF )Rd
− 2R

Lc

]

.

We should optimize this expression with respect to the hopping distance R.
For large R the second term is important and probability of tunneling is
too small. For small R the activation energy is too high. Optimal hopping
distance depends on temperature, - variable range hopping,

Rh ∼
[

Lc

TN(EF )

]1/(d+1)

,

and conductivity is

σ ∝ exp
[

− (T0/T )
1/(d+1)

]

, T0 ∼
1

N(EF )Ld
c

.

In 3d σ ∝ exp[−(T0/T
1/4)] (Mott’s law). In the Mott’s picture Coulomb

interaction is neglected. If the Coulomb energy e2/εR (ε - dielectric constant)
for creating the electron hole pair
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becomes larger than ∆ε from Eq.(4) we should replace ∆ε by e2/εR and

P ∝ exp

[

− e2

εRT
− 2R

Lc

]

.

Optimizing for R we get

R ∝ T−1/2 and σ ∝ exp
[

− (T1/T )
1/2

]

B. I. Shklovskii and A. I. Efros (1975).
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