
Lecture 21

Anderson Localization

Let us consider non-interacting electrons in random potential U(r). The
Schrödinger equation is

− ~2

2m
∇2ψ + U(r)ψ(r) = Eψ.

This is continuous version of the problem. We can discuss also the lattice
formulation.

H =
∑
i

εia
+
i ai +

∑
ij

tija
+
i aj.

If site energies εi are random disorder is called diagonal. This is the case for
the Anderson model. If tij is random it is non-diagonal disorder.

The Lifschitz model corresponds to positional
disorder, the same wells, but randomly spaced.

Consider for simplicity the Anderson model with diagonal disorder of the
width W : 〈ε2〉 − 〈ε〉2 = W 2. P. W. Anderson (1958) argued that for
sufficiently large W/t all the states in the system are localized.
How to formulate localization condition?
Assume at t = 0 a particle was on the site i. This is not an eigenfunction of
the Hamiltonian and will change in time. Assume we solve the Schrödinger
equation.
If lim

t→∞
|ψi(t)|2 = 0 then we have delocalized state.

If lim
t→∞
|ψi(t)|2 > 0 we call this state localized.
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Energies Em1 and Em2 which separate the regions of localized and delocalized
states are called mobility edges. For strong disorder Em1 → Em2 and all the
states are localized. When the Fermi energy crosses the mobility edge we
have the Metal Insulator transition.
In one dimension all the states are localized!
Consider randomly distributed barriers

RL

ψR = teikx

ψL = eikx + re−ikx

|t|2 + |r|2 = 1.

Reflection amplitude r has an arbitrary phase dependent on the position of
impurity x0, r ∝ exp(2ikx0). In general the wave function on the right of
the barrier ψR = un exp(ikx) + vn exp(−ikx) is related to that on the left
ψL = un−1 exp(ikx) + vn−1 exp(−ikx) by the transfer matrix equation.(

un−1
vn−1

)
=

(
1/tn r∗n/t

∗
n

rn/tn 1/t∗n

)(
un
vn

)
The transmission and reflection coefficients for a system of N barriers are
given by the product of transfer matrices(

1
r

)
=

N∏
n=1

(
1/tn r∗n/t

∗
n

rn/tn 1/t∗n

)(
t
0

)
For two barriers

1

t
=

1

t1t2
+
r∗1r2
t∗1t2
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Since phases of ri are random we obtain 〈1
t
〉 = 1

t1t2
or in general case

〈t〉 =
∏
tn. Thus transmission is multiplicative function. This means that

on average multiple reflections cancel out and only transmission of the un-
reflected waves contributes to the total transmission. As a result the wave
function falls off exponentially with the distance - localization. According to
the Landauer formula

R =
π~
e2

∣∣∣r
t

∣∣∣2 , π~
e2

= 12.9kΩ

and resistance of the one dimensional system grows exponentially with length

R(L) =
π~
e2

exp(L/lc),

where lc is the localization length.

Landauer formula

t

1
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2r

We have given current I and calculate the difference in electron densities
on the sides of the barrier which should be compensated by the external
potential V
On the left ψ = exp(ikFx) + r exp(−ikFx).
On the right ψ = t exp(ikFx).
Thus electron density on the left is nL = (j0 + jR)/vF e, where j0 and jR
describe the incident and the reflected current densities respectively. Simi-
larly on the right nR = jT/vF e. Note that jR = |r|2j0, jT = |t|2j0. Den-
sity difference nL − nR = δn = N(E)eV . In 1d N(E) = 2/π~vF , thus
V = (π/2)(~/e2)j0(1 + |r|2 − |t|2) = π~|r|2j0/e2. Since transport current is
I = j0|t|2 one gets Landauer formula R = (π~/e2)|r/t|2.
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Thouless approach

Let us start with the Einstein relation for conductivity

σ = e2N(EF )D.

where D is the diffusion coefficient, D = vF l/d, d is the dimensionality of
the space.

σ =
ne2τ

m
= e2N(EF )D.

As we understood from the 1d case resistivity or conductivity are not very
good quantities and one should better talk about the total conductance.
Consider a “block” with the sizes L. Its conductance is G = σLd−2 =
(e2/~)N(EF )Ld(~D/L2),

G =
e2

~
Ec
∆
,

where ∆ is level spacing in the block Ld : ∆ = N(EF )Ld and Ec is the
Thouless energy Ec = (~D/L2) = ~/τ - inverse diffusive time to traverse
the block. Ec determines sensitivity of the energy levels to the change of
boundary conditions, Ec = π2|∂2E/∂φ2|, where φ is the phase difference at
the boundary. Let us consider levels in the adjacent blocks

cE

The coupling between blocks is ∼ Ec and the spacing between the energy
levels ∼ ∆. Thus it looks like a tight binding model with hoping ∼ Ec
and disorder W ∼ ∆. If Ec � ∆ then levels are well mixed and we have
usual Ohm’s law. If Ec � ∆ then there is very little mixing and we have
localization. Thus if the wire has resistance ≥ ~/e2 ≈ 4kΩ then the states are
localized and R ∝ exp(L/Lc), Localization length in this case is Lc ∼ l(Sk2F ),
where S is the cross section of the wire.
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Scaling theory of localization

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan
(1979).
Let us write conductance as

G(L) =
e2

~
Ec
∆

=
e2

~
g(L).

g(L) is dimensionless conductance. Both Ec,∆ and thus g depend on the
block size L. The scaling hypothesis assumes that g is the only quantity
which determines the behaviour of the system when its size is changed.

g(bL) = f(b, g(L)).

Let us rewrite it in the differential form, b = 1 + α with α � 1. Then in
lowest orders in α we have

g(L) = f(1, g(L)), αLg′(L) = α
∂f

∂b

∣∣∣∣
b=1

.

Dividing the second equation by g and introducing β(g) = (∂f/∂b)|b=1 /g we
obtain

d ln g

d lnL
= β(g).

The function β(g) is called the Gell-Mann - Low function. For large con-
ductance we expect to have the Ohm’s law, G = σLd−2. Then for large
g

β(g) ≈ d− 2; g →∞.

For small g we expect localization, g ∝ exp(−L/Lc), thus

β(g) ≈ ln g + const; g → 0.
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From these asymptotics on large and small g we can guess the general de-
pendence of β(g) and the renormalization group (RG) flow.

ln

ln

d g

d L
 

1

*g
ln g

1

1d 

2d 

3d 

Negative β(g) means that with increasing size g → 0 and we have localization.
This is the case for 1d and 2d. In 3d situation is different. We have unstable
fixed point g∗ : β(g∗) = 0. For g < g∗ we have localization, for g > g∗ with
increase of the system size we go to the usual Ohm’s law. If we assume that
close to g∗

β(g) =
1

ν

(
g

g∗
− 1

)
≈ 1

ν
ln

g

g∗

and integrate the RG equation from L0, g0 we obtain

g ≈ g∗
(
g0
g∗

)(L/L0)1/ν

.

Since localization appears due to the interference effects from multiple scat-
tering we expect, that it doesn’t show at the scales lower than the mean free
path l. Thus it is naturally to put L0 ∼ l. If we change some parameter x
(e.g. impurity concentration or pressure) such that g0 = g∗(1 + x) then

g ≈ g∗(1 + x)(L/L0)1/ν ≈ g∗ exp
(
x(L/l)1/ν

)
.

For small x < 0 conductance g falls off exponentially and we can extract the
localization length Lc ' lx−ν . For x > 0 we should match the growth of g
with the Ohm’s law ge2/~ ' σL at g ' g∗ which gives

σ ' e2

~
g∗

Lc
' e2

~
g∗

l
xν .
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