Problem 5.1 One-Dimensional Model of a Semiconductor

Let us consider electrons moving on a one-dimensional chain. We use the so-called tightbinding approximation. Thus, we assume that each atom has a localized electron state and that the electrons are able to hop between neighboring atoms. This hopping process describes the kinetic energy term.
It is most convenient to use a second-quantized language. For simplicity, we assume the electrons to be spinless fermions. Let c_{i} and c_{i}^{\dagger} be the creation and annihilation operators for an electron at site i, respectively. The overlap integral between neighboring electron states is denoted by t . Then, the kinetic energy operator is written as

$$
\begin{equation*}
H_{0}=-\mathrm{t} \sum_{i}\left(c_{i}^{\dagger} c_{i+1}+c_{i+1}^{\dagger} c_{i}\right) . \tag{1}
\end{equation*}
$$

We assume that the chain contains N atoms and in the following we set the lattice constant $a=1$. As a second step, we consider an alternating bipartite lattice which we model by a potential of the form

$$
\begin{equation*}
V=v \sum_{i}(-1)^{i} c_{i}^{\dagger} c_{i} . \tag{2}
\end{equation*}
$$

(a) Consider first the case $v=0$. Show that the states created by

$$
\begin{equation*}
c_{k}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{j} e^{-i k j} c_{j}^{\dagger} \tag{3}
\end{equation*}
$$

are eigenstates of H_{0} with energy $\epsilon_{k}=-2 \mathrm{t} \cos k$. Here, k belongs to the first Brillouin zone $[-\pi, \pi)$.
(b) For $v \neq 0$ the creation operators for the new eigenstates can be obtained by means of a so-called Bogoliubov transformation which we write as

$$
\begin{equation*}
a_{k}^{\dagger}=u_{k} c_{k}^{\dagger}+v_{k} c_{k+\pi}^{\dagger}, \quad b_{k}^{\dagger}=v_{k} c_{k}^{\dagger}-u_{k} c_{k+\pi}^{\dagger} \tag{4}
\end{equation*}
$$

where $u_{k}^{2}+v_{k}^{2}=1$ (both u_{k} and v_{k} may be assumed to be real) for all k in the reduced Brillouin zone $[-\pi / 2, \pi / 2)$. Diagonalize the Hamiltonian and show that it can be written in the form

$$
\begin{equation*}
H_{0}+V=\sum_{k \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right)}\left(-E_{k} a_{k}^{\dagger} a_{k}+E_{k} b_{k}^{\dagger} b_{k}\right), \quad E_{k}=\sqrt{\epsilon_{k}^{2}+v^{2}} . \tag{5}
\end{equation*}
$$

(c) Consider now the ground state of the half-filled chain ($N / 2$ electrons). What is the difference between the cases (a) and (b)?

