
Quantum Information Processing

Solutions 6.

FS 2015
Prof. A. İmamoğlu,

Prof. R. Renner

In this exercise sheet we will prove two things: Grover’s search algorithm for the unstructured search
is quadratically better than any classical algorithm; and no quantum algorithm can perform the search
significantly faster than Grover’s algorithm, i.e. Grover is optimal.

Exercise 1. Warm-up: classical query complexity for unstructured search

As for the ‘quantum data base search’ discussed in the lecture we consider the problem of the ‘classical
data base search’ in the following form:

Given an oracle Of for some function f : {0, 1}n → {0, 1} and assuming we are promised that
exactly one input x = w is such that f(w) = 1, find w, i.e.

f(x) =

{
1, if x = w,

0, otherwise.
(1)

The name ‘unstructured search’ says that there is no inherent structure in the data one could make use of
to accelerate the algorithm. In complexity theory it is often asked what is the minimal number of queries
to an oracle necessary to achieve a certain task – this is called the query complexity.

(a) If we are interested in a deterministic classical algorithm determining w, how often does this algo-
rithm have to query the oracle in the worst case? Be precise in the argumentation.

(b) Assume we consider (not necessarily deterministic) algorithms whose output is w only with success
probability p. What is the worst case number of queries?

(c) Conclude that a classical algorithm solving the search problem has to consult the oracle at least
Ω(N) times.1

Solution.

(a) We note a few crucial observations before combining them into a simple stringent argument.
First and foremost, the only way a classical algorithm can have success is if it inputs w
into the oracle and thereby observes the outcome f(w) = 1. Second, an algorithm that is
said to solve the problem has to find the marked item w for all possible functions f . Third,
the order according to which the possible inputs x ∈ {0, 1}n are checked cannot be faster
or slower than an other one in general. For any given order there is a function f whose
marked item is the last one to be checked. Finally, there are no shortcuts because it is
assumed that there is no inherent structure in the data (unstructured search). Otherwise
one could imagine that knowing that x1 and x2 are not the marked item one can conclude
that x3 is not marked either, hence saving one query.

We conclude that any deterministic algorithm has to specify an order according to which
the different inputs x are input into the oracle. It can stop if and only if it found w, i.e.
an output of 1, or if it checked all but the last possible input, which can then be concluded
to be the marked one. For any checking order, there is a function f that marks the last
input of that order, hence requiring 2n − 1 ≡ N − 1 queries.

(b) We build on the previous argument. In a nondeterministic algorithm the order may not
predefined. It is possible that from time to time, or always, the next input is chosen
at random. However, the previous argument can be extended to that case: any order,

1For two functions h, g one says h = Ω(g), ‘h is Big Omega of g’, if ∃c > 0, ∃N0 s.t. ∀N > N0: h(N) ≥ c ·g(N).

1

whether predetermined or random, can encounter a function f that shows the output 1
only in the last possible input.

If the success probability is lowered from one to 0 ≤ p ≤ 1 the game changes, but only
slightly. An algorithm still has to check almost all possible inputs. Suppose it checked
N−k of the N possible inputs without finding w. The probability to guess correctly which
one of the k remaining item is marked is 1

k . Hence, if the success probability has to be at
least p, it may happen that N − b1pc items have to be checked.2

(c) We conclude that any classical algorithm for the unstructured search with success proba-
bility p, whether deterministic or randomized, has to query the oracle N−b1pc times in the
worst case. This function is Big Omega of N , Ω(N) (see definition in the above footnote).

Exercise 2. Optimality of Grover’s search algorithm in quantum computation

We have seen in the lecture that Grover’s search algorithm consults the oracle only O(
√
N) times3

(N = 2n). In this exercise we show that no quantum algorithm can perform this task using fewer than
Ω(
√
N) queries, hence Grover’s algorithm is optimal. For simplicity we assume that there is a unique

solution. The oracle is then described by the unitary operation Ũw = 1− 2|w〉〈w|, as encountered in the
lecture.4

Suppose the algorithm starts in a state |ψ0〉 and applies the oracle Ũw exactly k times, interleaved with
unitary operations5 U1, . . . , Uk. Define

|ψw
k 〉 = Uk Ũw Uk−1 Ũw · · ·U1 Ũw|ψ0〉, (state with oracle operations) (2)

|ψk〉 = Uk Uk−1 · · ·U1|ψ0〉, (state without oracle operations) (3)

and define the deviation after k steps caused by the oracle as

Dk =
∑
w

∥∥|ψw
k 〉 − |ψk〉

∥∥2. (4)

If Dk is small there is only a small difference between |ψw
k 〉 and |ψk〉 and it is not possible to correctly

identify w with high probability.

(a) Using Eqs. (5.1) and (6), show that Dk ≤ 4k2 by induction.

(b) Assume that for all possible functions f , i.e. all possible w, an observation yields a solution to
the search with probability at least 1/2. This is, |〈w|ψw

k 〉|2 ≥ 1
2 for all w. Furthermore, assume6

〈w|ψw
k 〉 = |〈w|ψw

k 〉|. Using Eqs. (5.2) and (7), show that in this case Dk ≥ cN for some c and
sufficiently large N .

Together these two points prove that k = Ω(
√
N) if the algorithm is to succeed, hence any quantum algo-

rithm solving the search problem has to query the oracle at least Ω(
√
N) times.

Hints:

2If the algorithm checked only N − b 1
p
c − 1 or less the probability of guessing w correctly would be p′ =

1

b 1
p
c+1

< p.

3As a reminder: h = O(g), ‘h is Big O of g’, if ∃c > 0, ∃N0 s.t. ∀N > N0: h(N) ≤ c · g(N).
4The subscript of the oracle is chosen to be w instead of f (as it was done in the lecture) because this simplifies

the notation later and because f is completely defined by w.
5In the Grover algorithm the Uk are all equal to H⊗nŨ0H

⊗n, where Ũ0 is the new notation for Ũf0 .
6Replacing |w〉 with eiθ|w〉 does not change the probability of success, so w.l.o.g. we may assume that 〈w|ψwk 〉 =

|〈w|ψwk 〉|.

2

(i) The Cauchy-Schwarz inequality is helpful in various steps of this exercise.

(ii) For any two vectors a, b in a Hilbert space H, show that

‖a+ b‖2 ≤ ‖a‖2 + ‖b‖2 + 2‖a‖‖b‖ and ‖a+ b‖2 ≥ ‖a‖2 + ‖b‖2 − 2‖a‖‖b‖. (5)

(iii) Let {ai}N−1
i=0 be an orthonormal basis of an N -dimensional Hilbert space H with inner product (· , ·)

and b ∈ H normalized. Then ∑
i

|(ai, b)|2 = 1. (6)

(iv) Same setting as in (iii) with N = dim(H), show that∑
i

‖b− ai‖2 ≥ 2N − 2
√
N. (7)

Solution.

(a) Since |ψw
0 〉 = |ψ0〉 the claim is clearly true for k = 0. For any k, notice that

Dk+1 =
∑
w

∥∥Uk Ũw |ψw
k 〉 − Uk |ψk〉

∥∥2 =
∑
w

∥∥Ũw |ψw
k 〉 − |ψk〉

∥∥2 (S.1)

=
∑
w

∥∥Ũw

(
|ψw

k 〉 − |ψk〉
)

+
(
Ũw − 1

)
|ψk〉

∥∥2 (S.2)

(5.1)

≤
∑
w

(∥∥Ũw

(
|ψw

k 〉 − |ψk〉
)∥∥2 + 2

∥∥Ũw

(
|ψw

k 〉 − |ψk〉
)∥∥∥∥ (Ũw − 1

)
|ψk〉

∥∥+
∥∥(Ũw − 1

)
|ψk〉

∥∥2)
=
∑
w

(∥∥|ψw
k 〉 − |ψk〉

∥∥2 + 4
∥∥|ψw

k 〉 − |ψk〉
∥∥ ∣∣〈w|ψk〉

∣∣+ 4
∣∣〈w|ψk〉

∣∣2,) (S.3)

where we used
(
Ũw−1

)
|ψk〉 = −2〈w|ψk〉|w〉 in the last line as well as the fact that unitary

operations leave the norm of a vector invariant. By Eq. (6) and Cauchy-Schwarz we obtain

Dk+1 ≤ Dk + 4

(∑
w

∥∥|ψw
k 〉 − |ψk〉

∥∥2)1/2(∑
w

∣∣〈w|ψk〉
∣∣2)1/2

+ 4

= Dk + 4
√
Dk + 4

(S.4)

The induction hypothesis tells us Dk ≤ 4k2, hence we obtain

Dk+1 ≤ 4k2 + 8k + 4 = 4(k + 1)2, (S.5)

which completes the first part of the proof.

(b) By |〈w|ψw
k 〉|2 ≥

1
2 for all w and 〈w|ψw

k 〉 = |〈w|ψw
k 〉|,∥∥|ψw

k 〉 − |w〉
∥∥2 = 2− 2

∣∣〈w|ψw
k 〉
∣∣ ≤ 2−

√
2. (S.6)

Define now Ek =
∑

w

∥∥|ψw
k 〉 − |w〉

∥∥2 and Fk =
∑

w

∥∥|ψk〉 − |w〉
∥∥2. By the above: Ek ≤

(2 −
√

2)N ; and by Eq. (7): Fk ≥ 2N − 2
√
N . We are now in the position to prove an

asymptotic lower bound on Dk:

Dk =
∑
w

∥∥(|ψw
k 〉 − |w〉

)
+
(
|w〉 − |ψk〉

)∥∥2 (S.7)

(5.2)

≥
∑
w

∥∥|ψw
k 〉 − |w〉

∥∥2 − 2
∑
w

∥∥|ψw
k 〉 − |w〉

∥∥∥∥|w〉 − |ψk〉
∥∥+

∑
w

∥∥|w〉 − |ψk〉
∥∥2 (S.8)

= Ek + Fk − 2
∑
w

∥∥|ψw
k 〉 − |w〉

∥∥∥∥|w〉 − |ψk〉
∥∥. (S.9)

3

Using again Cauchy-Schwarz the last term can be bounded by 2
√
EkFk, hence using the

bounds for Fk and Ek

Dk ≥ Ek + Fk − 2
√
EkFk =

(√
Fk −

√
Ek

)2
≥ cN (S.10)

for some c and large enough N .

Comment 1: If there are M solutions to the search problem it can be shown analogously
that any successful quantum algorithm needs at least Ω(

√
N/M) queries. Also in this case

Grover’s algorithm is optimal (up to constant factors in the number of queries).

Comment 2: Notice that it was not crucial to request |〈w|ψw
k 〉|2 ≥

1
2 for all w with

probability bound 1/2. It could have been any strictly positive bound p (smaller than 1,
of course).

4

