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Exercise 1. Favesdropping quantified

(¢)

(b)

(c)

Consider the following setting.

Alice and Bob are given a choice between two different coins; Alice can toss either coin Ay or coin
As and Bob, either By or Bs. For each toss each party must choose one of the two; tossing both
Ag and Ay or both By and Bs is forbidden.

Suppose that Eve wants to manufacture a device that outputs values, Z, designed to tally with Ag.
Show that Eve has limited chances to succeed by proving the inequality

Pr(Z = Ag) < %(HIZ), (1)

where
_[2 = PI(A() 75 Bl) + Pl"(Bl 75 Az) + PI‘(AQ 7é Bg) + PY(B3 = AU)

Hint. Show and use the following inequality

Pr(A; = Z) — Pr(B; = Z) < Pr(A; # B;) i€{0,2},j € {1,3}.

The scenario can be generalised as follows: Alice has now the choice among N > 2 different coins
A; indexed byt € {0,2,...,2N —2}. Similarly, Bob has the choice between N coins B; labelled by
tje{1,3,...,2N —1}. As before Alice and Bob can only toss one of their coins at the same time.

Show that for N measurements
1
Pr(Z = Ao) < 3 (1+1In), (2)

where

IN = PI‘(AO = BQN_l) + Z PI‘(AZ' 7& Bz) (3)

li—jl=1
holds.

We will now see that quantum systems can be used to achieve Iy — 0. Alice and Bob share a qubit
in a maximally entangled state
1

V2
Alice’s coin toss is implemented by a measurement w.r.t. {ES, Ei} on her qubit, where E§ is the
projector onto state |55m) (corresponding to outcome “07), and E} is the projector onto state
| (5% + 1) ) (corresponding to outcome “17), with |0) = cos §| 1) +sin 4| |). The same holds for
Bob’s measurements B;.

(1) + 1 H)-

Show that,

s 71'2

Iy = 2N sin? I (4)

oo



Solution.

(a) We have

(b)

()

Pr(A;, = Z2)

< Pr(A; # Bj) + Pr(B; = Z)

= PI‘(AZ = Z)

This implies a sequence of inequalities:

— PI‘(Bj = Z) < PI‘(AZ 75 Bj).

PI‘(AO Z) PI‘(Bl Z) Pr (AO 7& Bl)

PI‘(Bl = Z) — PI“(AQ Z) Pr (A2 7'5 Bl)
PI‘(AQ = Z) PI‘(B Z) Pr (AQ 75 Bg)
PI‘(Bg == Z) — PI“(AO 75 Z) < PI‘(AO = Bg)

where the last inequality follows from analogous reasoning as above.
Adding these inequalities together and taking into account that Pr(Z # Ag) = 1—Pr(Z =

Ap) gives

Pr(Z = Ao) < 5 (14

The proof is analogous to part (a).

PI‘(AO = Z) — Pr(B1 =

PI‘(BQN,1 = Z) — PI‘(AQN,
PI"(BQN_l = Z) — PI‘(Al 7£ Z) §

Adding again yields the desired inequality.

PI‘[A() B2N ]

= PY[AO = Bony_1 = 0] + PI’[AO = Bon_
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Z) < Pr(Ag # B1)

(Aon_2 # Ban—1)
PI'(AO = BQN_l)
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Pr[A4; # Bj]
= Pr[A; = O,B’ = 1]+ Pr[4; = 1, B; = 0]
. 2
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= % ‘ (cos(iv);r) COS((2§V 1)7T) + sm(ivg) Sin((ZLN + 1)2))
1 7 T . 7 . j T 2
+ 5 ‘ (cos((2N + 1)5) cos(ﬁg) + sm((ﬁ + 1)5) sm(2N2)> (S.2)
Use -
cos(x + =) = —sin(z) sin(z + 5) = cos(z) =
1 i jm ir ir \? 1 i jm i
(?7) = 5 (— COS(QN)SIH(QN) + 51n(2N) COS(QN)> —1—5 <— sm(ﬁ)cos(ﬁ) + cos(ﬁ)sm(
1 1
= 5 s (({ =) ) SR = ) ) =sin’(5p)
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T w2
= Iy = [1+ (2N — 1)]sin? (4N)—2Nsm (4N)§87N
where we used sin(z) < x for > 0.
Exercise 2. Stronger than quantum correlations: The PR-Box

Let us consider again the case of two coins with correlations summarised by the following table.

Alice AO A2
Bob 0 1 0 1
I T
B, 0] 5—c¢ 16 5—€ 16

1 € 5 —€ € 5 —€
T T
Bs 0 € 5—€| 5—¢€ €
1 %—e € € %—e

The entries in the tables correspond to the conditional probabilities of the joint outcomes, e.g. he first
entry means Pxy|a,p, ((,y) = (0,0)) = 5 — €.

We have seen in the lecture that these correlations can be created within quantum mechanics for € =

1 sin®(m/8) ~ 0.07.

In the following we will denote by X € {0,1} the outcome of Alice’s coin toss and by Y € {0,1} the
outcome of Bob’s coin toss.

(a) Correlations of the above form that exist within quantum theory cannot be created classically. How-
ever, they are not the most general distributions we could consider if we are only constrained by the



(b)

no-signalling principle: there are in fact other joint distributions that cannot be obtained by mea-
surements on a quantum state, but that nonetheless would not allow for instantaneous information
transmission over distance (signalling)

PX|A¢B1(1') = PX|A¢("L‘)7 fOT’i € {072}71' € {Oa 1}

To see this, look at the following joint probability distribution for e =0, a so-called PR box:

Alice AO A2
Bob 0 10 1
olL oL o
By 2 2
P
Bs 2 2
13 0]0 2

Show that the PR box
(i) is non-signalling
(ZZ) is non-local: PXY|AiBj # PX|AiPY\Bj 5y
(#ii) yields Iy = 0.
We shall now see how the above quantum correlation (coming from the Bell state) can be simulated
using such a PR box combined with deterministic strategies. Imagine that Alice and Bob apply the
following strategy:
o with probability 1 — p a PR-box;
o with probability p/4, one of four deterministic bozes, that always outcome 00, 01, 10 and 11

respectively.

Find p so that the final joint probability distribution equals the one of the Bell state given above.

Solution.

(a)

The PR-box is

(i) mon-signalling:

Alice A() AQ
Bob + - |+ -
+[2 ol3 o0
By 518 1
e
+ T 0
Bs 0jo 1

Pxa,B,(z) = Px|a,(7), Vi,z &
< ZPXY\AiBl(xvy) = ZPXYIAi(xv?J)7 Vi, x &

y y
& Z red terms = Z , V columns <
1 1
S -=-V
2 2

The other non-signalling conditions, can be checked similarly.



(ii) non-local:

Pxya,B;(x,y) # Px|a,(¥) Py, (y), Vi, j,z,y &

& Pxy|a,B,(T.y) # ZPXY\AZ»,B; (z,9)
y/
& {table cell} # [3° } [Z row of the cell} LV cells &

11 1
S0or—# ===
oSGy

ZPXYA;,Bj(x,7y>] Vi/v.jlu Vi7j7x7y<:>
2!

v

(iii) and yields In(Pxy|ag) = 0.

Alice A() A2
Bob + -+ -
+]13 03 O
B 1lo 1
+]l0 111 o0
Bs p 22y
-/t o)o 1

Iy = Z red terms = 0

(b) If we look at the first entry in the table (top left), it is straightforward to see that we need

1 1 1
1- = - === :
(1=p)egtpry=g-6 (53
which implies that p = 4e. One can easily verify that this result also works for the other

entries in the table.



