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Exercise 1. Eavesdropping quantified

(a) Consider the following setting.

Alice and Bob are given a choice between two different coins; Alice can toss either coin A0 or coin
A2 and Bob, either B1 or B3. For each toss each party must choose one of the two; tossing both
A0 and A2 or both B1 and B3 is forbidden.

Suppose that Eve wants to manufacture a device that outputs values, Z, designed to tally with A0.
Show that Eve has limited chances to succeed by proving the inequality

Pr(Z = A0) ≤ 1

2
(1 + I2) , (1)

where
I2 = Pr(A0 6= B1) + Pr(B1 6= A2) + Pr(A2 6= B3) + Pr(B3 = A0).

Hint. Show and use the following inequality

Pr(Ai = Z)− Pr(Bj = Z) ≤ Pr(Ai 6= Bj) i ∈ {0, 2}, j ∈ {1, 3}.

The scenario can be generalised as follows: Alice has now the choice among N ≥ 2 different coins
Ai indexed by i ∈ {0, 2, . . . , 2N − 2}. Similarly, Bob has the choice between N coins Bj labelled by
t j ∈ {1, 3, . . . , 2N −1}. As before Alice and Bob can only toss one of their coins at the same time.

(b) Show that for N measurements

Pr(Z = A0) ≤ 1

2
(1 + IN ) , (2)

where

IN = Pr(A0 = B2N−1) +
∑
|i−j|=1

Pr(Ai 6= Bi) (3)

holds.

(c) We will now see that quantum systems can be used to achieve IN → 0. Alice and Bob share a qubit
in a maximally entangled state

1√
2

(| ↑↑〉+ | ↓↓〉).

Alice’s coin toss is implemented by a measurement w.r.t. {Ei0, Ei1} on her qubit, where Ea0 is the
projector onto state | i2N π〉 (corresponding to outcome “0”), and Ei1 is the projector onto state

|
(
i

2N + 1
)
π〉 (corresponding to outcome “1”), with |θ〉 = cos θ2 | ↑〉+ sin θ

2 | ↓〉. The same holds for
Bob’s measurements Bj.

Show that,

IN = 2N sin2 π

4N
≤ π2

8N
. (4)
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Solution.

(a) We have

Pr(Ai = Z) = Pr(Ai 6= Bj ∧Bj 6= Z) + Pr(Ai = Bj ∧Bj = Z)

≤ Pr(Ai 6= Bj) + Pr(Bj = Z)

⇒ Pr(Ai = Z)− Pr(Bj = Z) ≤ Pr(Ai 6= Bj).

This implies a sequence of inequalities:

Pr(A0 = Z)− Pr(B1 = Z) ≤ Pr(A0 6= B1)

Pr(B1 = Z)− Pr(A2 = Z) ≤ Pr(A2 6= B1)

Pr(A2 = Z)− Pr(B3 = Z) ≤ Pr(A2 6= B3)

Pr(B3 = Z)− Pr(A0 6= Z) ≤ Pr(A0 = B3)

where the last inequality follows from analogous reasoning as above.
Adding these inequalities together and taking into account that Pr(Z 6= A0) = 1−Pr(Z =
A0) gives

Pr(Z = A0) ≤
1

2
(1 + I2) .

(b) The proof is analogous to part (a).

Pr(A0 = Z)− Pr(B1 = Z) ≤ Pr(A0 6= B1)

...

Pr(B2N−1 = Z)− Pr(A2N−2 = Z) ≤ Pr(A2N−2 6= B2N−1)

Pr(B2N−1 = Z)− Pr(A1 6= Z) ≤ Pr(A0 = B2N−1)

Adding again yields the desired inequality.

(c)

Pr[A0 = B2N−1]

= Pr[A0 = B2N−1 = 0] + Pr[A0 = B2N−1 = 1]

=

∣∣∣∣〈0| ⊗ 〈(1− 1

2N

)
π| 1√

2
(| ↑↑〉+ | ↓↓〉)

∣∣∣∣2 +

∣∣∣∣〈π| ⊗ 〈(2− 1

2N

)
π| 1√

2
(| ↑↑〉+ | ↓↓〉)

∣∣∣∣2
=

1

2

∣∣∣∣(cos((1− 1

2N
)
π

2
)〈↑↑ |+ sin((1− 1

2N
)
π

2
)〈↑↓ |+

)
1√
2

(| ↑↑〉+ | ↓↓〉)
∣∣∣∣2

+
1

2

∣∣∣∣(cos((2− 1

2N
)
π

2
)〈↓↑ |+ sin((2− 1

2N
)
π

2
)〈↓↓ |+

)
1√
2

(| ↑↑〉+ | ↓↓〉)
∣∣∣∣2

=
1

2
cos2((1− 1

2N
)
π

2
)2 +

1

2
sin2((2− 1

2N
)
π

2
)2 (S.1)

Use

cos(
π

2
− 1

2N

π

2
) = sin(

π

4N
)

sin(π − 1

2N

π

2
) = sin(

π

4N
)
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⇒ (??) =
1

2
(sin2(

π

4N
) + sin2(

π

4N
)) = sin2(

π

4N
).

Pr[Ai 6= Bj ]

= Pr[Ai = 0, Bj = 1] + Pr[Ai = 1, Bj = 0]

=

∣∣∣∣〈 i2N
π| ⊗ 〈( j

2N
+ 1)π| 1√

2
(| ↑↑〉+ | ↓↓〉)|2 + |〈( i

2N
+ 1)π| ⊗ 〈 j

2N
π| 1√

2
(| ↑↑〉+ | ↓↓〉)

∣∣∣∣2
=

1

2

∣∣∣∣(cos(
i

2N
)
π

2
) cos((

j

2N
+ 1)

π

2
) + sin(

i

2N

π

2
) sin((

j

2N
+ 1)

π

2
)

)∣∣∣∣2
+

1

2

∣∣∣∣(cos((
i

2N
+ 1)

π

2
) cos(

j

2N

π

2
) + sin((

i

2N
+ 1)

π

2
) sin(

j

2N

π

2
)

)∣∣∣∣2 (S.2)

Use
cos(x+

π

2
) = − sin(x) sin(x+

π

2
) = cos(x)⇒

(??) =
1

2

(
− cos(

iπ

2N
) sin(

jπ

2N
) + sin(

iπ

2N
) cos(

jπ

2N
)

)2

+
1

2

(
− sin(

iπ

2N
) cos(

jπ

2N
) + cos(

iπ

2N
) sin(

jπ

2N
)

)2

=
1

2
sin2((i− j)︸ ︷︷ ︸

±1

π

4N
) +

1

2
sin2((i− j) π

4N
) = sin2(

π

4N
)

⇒ IN = [1 + (2N − 1)] sin2(
π

4N
) = 2N sin2(

π

4N
) ≤ π2

8N

where we used sin(x) ≤ x for x > 0.

Exercise 2. Stronger than quantum correlations: The PR-Box

Let us consider again the case of two coins with correlations summarised by the following table.

Alice A0 A2

Bob 0 1 0 1

B1
0 1

2 − ε ε 1
2 − ε ε

1 ε 1
2 − ε ε 1

2 − ε

B3
0 ε 1

2 − ε
1
2 − ε ε

1 1
2 − ε ε ε 1

2 − ε

The entries in the tables correspond to the conditional probabilities of the joint outcomes, e.g. he first
entry means PXY |A0B1

((x, y) = (0, 0)) = 1
2 − ε.

We have seen in the lecture that these correlations can be created within quantum mechanics for ε =
1
2 sin2(π/8) ≈ 0.07.

In the following we will denote by X ∈ {0, 1} the outcome of Alice’s coin toss and by Y ∈ {0, 1} the
outcome of Bob’s coin toss.

(a) Correlations of the above form that exist within quantum theory cannot be created classically. How-
ever, they are not the most general distributions we could consider if we are only constrained by the
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no-signalling principle: there are in fact other joint distributions that cannot be obtained by mea-
surements on a quantum state, but that nonetheless would not allow for instantaneous information
transmission over distance (signalling)

PX|AiB1
(x) = PX|Ai

(x), for i ∈ {0, 2}, x ∈ {0, 1}.

To see this, look at the following joint probability distribution for ε = 0, a so-called PR box:

Alice A0 A2

Bob 0 1 0 1

B1
0 1

2 0 1
2 0

1 0 1
2 0 1

2

B3
0 0 1

2
1
2 0

1 1
2 0 0 1

2

Show that the PR box

(i) is non-signalling

(ii) is non-local: PXY |AiBj
6= PX|Ai

PY |Bj
;

(iii) yields IN = 0.

(b) We shall now see how the above quantum correlation (coming from the Bell state) can be simulated
using such a PR box combined with deterministic strategies. Imagine that Alice and Bob apply the
following strategy:

• with probability 1− p a PR-box;

• with probability p/4, one of four deterministic boxes, that always outcome 00, 01, 10 and 11
respectively.

Find p so that the final joint probability distribution equals the one of the Bell state given above.

Solution.

(a) The PR-box is

(i) non-signalling:

Alice A0 A2

Bob + − + −

B1
+ 1

2 0 1
2 0

− 0 1
2 0 1

2

B3
+ 0 1

2
1
2 0

− 1
2 0 0 1

2

PX|AiB1
(x) = PX|Ai

(x), ∀i, x⇔

⇔
∑
y

PXY |AiB1
(x, y) =

∑
y

PXY |Ai
(x, y), ∀i, x⇔

⇔
∑

red terms =
∑

orange terms, ∀ columns⇔

⇔ 1

2
=

1

2
X

The other non-signalling conditions, can be checked similarly.
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(ii) non-local:

PXY |Ai,Bj
(x, y) 6= PX|Ai

(x) PY |Bj
(y), ∀i, j, x, y ⇔

⇔ PXY |Ai,Bj
(x, y) 6=

∑
y′

PXY |Ai,B′
j
(x, y′)

[∑
x′

PXY |A′
i,Bj

(x′, y)

]
∀i′, j′, ∀i, j, x, y ⇔

⇔ {table cell} 6=
[∑

{column of the cell}
] [∑

row of the cell
]
, ∀ cells⇔

⇔ 0 or
1

2
6= 1

2
· 1

2
=

1

4
X

(iii) and yields IN (PXY |AB) = 0.

Alice A0 A2

Bob + − + −

B1
+ 1

2 0 1
2 0

− 0 1
2 0 1

2

B3
+ 0 1

2
1
2 0

− 1
2 0 0 1

2

IN =
∑

red terms = 0

(b) If we look at the first entry in the table (top left), it is straightforward to see that we need

(1− p) ∗ 1

2
+ p ∗ 1

4
=

1

2
− ε, (S.3)

which implies that p = 4ε. One can easily verify that this result also works for the other
entries in the table.
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