
Chapter 1

Quantum Entanglement

• Enganglement is a feature of quantum mechanics that plays a central role
in many quantum information processing (QIP) protocols:

→ Two quantum systems that are in an entangled state exhibit strong
correlations with no classical analog.

→ While research aimed at generation, classification and detection of
quantum entanglement blossomed with the advent of QIP, it is now
recognized that entanglement is of central interest in condensed mat-
ter many body physics.

Definition: Consider a composite (bipartite) quantum system, com-
posed of systems A & B: the composite system is entangled if its state-
vector cannot be written in the form

|ΨAB〉 = |ΨA〉 ⊗ |ΨB〉︸ ︷︷ ︸
separable state

(1.1)

• Since it may not always be easy to see if |ΨAB〉 can be written in form
(1.1), it is useful to consider the Schmidt decomposition:

Theorem: Let |ΨAB〉 be any pure state of a composite bipartite system.
Then there exists orthonormal basis {|iA〉} of system A and {|iB〉} for
system B, such that

|ΨAB〉 =
∑
i

λi |iA〉 |iB〉 (1.2)

The number of non-zero λi’s in the expansion (1.2) is called the Schmidt
number = R;

If R > 1, the bipartite state is entangled.

→ However, R = 2 both for |φ〉 = 1√
2
(|↑↓〉 − |↓↑〉) and for

∣∣∣φ̃〉 =

|↑↓〉−ε |↓↑〉. In that sense, the Schmidt number does not quantify en-
tanglement except from distinguishing product states from the rest.
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1.1 How does a bipartite system become entan-
gled?

1. Interactions: evolution under a Hamiltonian of the form:

H =
∑
i

Âi ⊗ B̂i ⇒ deterministic

ex 1: Two confined spins with Heisenberg exchange.

H1 = J1~σ
A · ~σB︸ ︷︷ ︸

|Ψs〉= 1√
2
(|↑↓〉−|↑↓〉) is the ground state of Hs

ex 2: Two confined spins, initially in |↑↓〉 subject to transverse exchange:

H2 = J2
(
σA
x σ

B
x + σA

y σ
B
y

)
⇒ |Ψ(t)〉 = α(t) |↑↓〉+ β(t) |↓↑〉︸ ︷︷ ︸

evolution under H2

with α(t) 6= 0 6= β(t) for most t.

2. Projection based on a certain measurement outcome:
⇒ Probabilistic, does not require interactions.

ex 3:
|Ψ〉 = (|↑A〉+ ε |↓A〉 |1a〉)⊗ (|↑B〉+ ε |↓B〉 |1b〉)

where |1a,b〉 denotes a photon in mode a,b. If we detect a photon in mode

ĉ = 1√
2

(
â+ b̂

)
, then post-measurement state is:

|Ψpost〉 ∼=
1√
2
(|↑〉 |↓〉+ |↓〉 |↑〉)

Here we rely on erasure of the which path information.

1.2 Where does entanglement show up?

→ Ground-states of condensed-matter systems:

– Fractional quantum Hall state (Topological order)

– Metals with magnetic impurities (Kondo effect)

→ Decoherence of quantum systems:
when a quantum system A is entangled with system R and we have no
access to R, we end up with decoherence of A.

→ Quantum error correcting codes:
deliberate/controlled generation of entanglement between quantum sys-
tems/bits to fight off entanglement of the unwanted sort (decoherence).
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→ Photons generated in parametric down conversion (useful – teleporation).

→ In QIP we typically use time-dependent Hamiltonians where we control
the time-evolution of a target quantum system A using another quantum
system (such as a laser) which we treat classically; quantum effects in the
control will result in (unwanted) entanglement.

1.3 Measures of entanglement

• von Neumann entropy (pure states)

• Bell’s inequality violation

• Concurrence

• Entanglement witnesses

Preliminaries:

So far we have considered pure bipartite states where we have complete infor-
mation about the composite system. In practice, this is typically not the case
and we have to describe the system using density operators:

• The most general description of a quantum system is:

ρ̂A =
∑
i

pi |φi〉 〈φi|︸ ︷︷ ︸
with probability pi the system is in |φi〉

– state is pure when pi 6= 0 only for a single i.

– for mixed states, the decomposition is not unique.

– A mixed-state of a composite system is separable if it can be written
as:

ρ̂AB =
∑
j

pj ρ̂
j
A ⊗ ρ̂jB (1.3)

where ρ̂jA, ρ̂
j
B are proper density matrices. (otherwise it is entangled.)

– Given ρ̂AB , the reduced system density operator is:

ρ̂A , TrB {ρ̂AB}

• Classical vs quantum correlations:

→ The state ρ̂AB = ρ̂A ⊗ ρ̂B is an uncorrelated state.

→ The separable state (1.3) exhibits classical correlations: whenever
system A has ρ̂jA, system B has ρ̂jB .

→ The state |Ψ〉 = 1√
2
(|↑↓〉 − |↓↑〉) exhibits quantum correlations. What-

ever direction we choose to measure the 2 spins, we always find that
they are pointing in opposite directions.
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In contrast ρAB = 1
2 |↑↓〉 〈↑↓|+

1
2 |↓↑〉 〈↓↑| exhibits correlations in a single

direction.

→ More generally, given 2 distant quantum systems, classical correlations are
those that can be generated using local (quantum) operators and classical
communication (LOCC).

Ex: Alice and Bob have access (only) to quantum systems A & B. They
share a random number generator; whenever the number is i, they prepare
the state ρ̂iA⊗ρ̂iB . If the probability of outcome i is pi, the density operator
describing the ensemble they generate is:

ρ̂AB =
∑
i

piρ̂
i
A ⊗ ρ̂iB .

• For a pure entangled state, we have complete information about the system
yet our information about individual systems is incomplete. Information
is hidden in the quantum correlations. To see this point more clearly, we
introduce maximally entangled states.

Definition A bipartite qubit state is maximally entangled if

ρ̂A , TrB (ρ̂AB) =
1

2
1 = TrA(ρ̂AB) = ρ̂B

that is the reduced density operator of either of the qubits contain no
information, i.e. whichever basis we use to measure the qubit, the two
outcomes are equally likely (p1 = P2 = 1/2)

→ For the bipartite qubit system, there are 4 orthonormal maximally entan-
gled states: (|↑〉 ↔ |0〉; |↓〉 ↔ |1〉)

∣∣Φ±〉 =
1√
2
(|00〉 ± |11〉) (1.4a)

∣∣Ψ±〉 =
1√
2
(|01〉 ± |10〉) (1.4b)

These maximally entangled states can be classified according to their

1. Parity: i.e. are the two qubits/spins aligned (|Φ±〉) or anti-aligned
(|Ψ±〉).

2. Relative phase: i.e. is the state in-phase (|Φ+〉 , |Ψ+〉) or out-of-phase
(|Φ−〉 , |Ψ−〉).

⇒ Specifying the parity and relative-phase completely determines the
maximally entangled state; both of these two bits of information
refer to correlations between the spins and tells us nothing about
individual spin orientations.

⇒ Just as we can carry out measurements that project the 2-qubit state
onto {|00〉 , |01〉 , |10〉 , |11〉} we could carry out joint measurements
projecting onto {|Φ±〉 , |Ψ±〉}. First, quick reminder:
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Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, 1 =

(
1 0
0 1

)

with |0〉 ↔
(
1
0

)
↔ |↑〉

ρ̂A = 1
2

(
1 + ~P · ~σ

)
with

∣∣∣~P ∣∣∣ ≤ 1 (Bloch sphere).

• Consider the operators σA
x ⊗ σB

x & σA
z ⊗ σB

z .

1. They can be measured simultaneously:[
σA
x σ

B
x , σA

z σ
B
z

]
= 0

2. σA
z σ

B
z measures parity:

σA
z σ

B
z

∣∣Φ±〉 =
∣∣Φ±〉

σA
z σ

B
z

∣∣Ψ±〉 = −
∣∣Ψ±〉

3. σA
x σ

B
x measures relative phase:

σA
x σ

B
x
|Φ+〉
|Ψ+〉 =

|Φ+〉
|Ψ+〉

σA
x σ

B
x
|Φ−〉
|Ψ−〉 = −|Φ−〉

|Ψ−〉

→ Just as the simultaneous measurement of σA
z , σ

B
z projects the state

vector onto {|00〉 , |01〉 , |10〉 , |11〉}, a simultaneous measurement of
σA
z σ

B
z , σA

x σ
B
x projects onto {|Φ±〉 , |Ψ±〉} and yields the parity and

relative phase information.
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• How do we carry out such a measurement?

Recall the HadamardH =

(
1 1
1 −1

)
and CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 gates:

the circuit:

A

B

H

b

a

realizes the map:

ab

|00〉 → 1√
2
(|0〉+ |1〉) |0〉 →

∣∣Φ+
〉

|01〉 → 1√
2
(|0〉+ |1〉) |1〉 →

∣∣Ψ+
〉

|10〉 → →
∣∣Φ−〉

|11〉 → →
∣∣Ψ−〉

Since this circuit describes a unitary evolution,
we can run it backwards to achieve the map:∣∣Φ+

〉
→ |00〉 ;

∣∣Ψ+
〉
→ |01〉 ;∣∣Φ−〉 → |10〉 ;

∣∣Ψ−〉 → |11〉 ;

A

B

H
+ measurement of σA

z & σB
z at the output is

equivalent to measurement of σA
x σ

B
x & σA

z σ
B
z .

• Note however that this measurement requires interactions (i.e. CNOT
gate) and cannot be carried out deterministically if the qubits are sparated.

• An obvious measure for the degree of entanglement of a composite pure
state is given by the von Neumann entropy of the reduced density operator:

SA = Tr {ρ̂A log2 ρ̂A}

where

log2 ρ̂A = 1.44

[(
ρ̂A − 1̂

)
−

(
ρ̂A − 1̂

)2
2

+ · · ·

]

→ If ρ̂A is diagonal in an orthonormal basis:

SA =
∑
i

pi log2 pi︸ ︷︷ ︸
SA = 0 ↔ pure state

SA = 1 ↔ maximally entangled state.
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→ We say that a maximally entangled 2-qubit state has 1 ebit1 of en-
tanglement.

Bell’s inequalities:

A seemingly very different and experimentally accessible way to determine if
a composite quantum system is entangled, is to carry out a Bell inequality
experiment to determine if it is violated.

→ This measure applies to pure and mixed states.

→ Significance of Bell’s inequality violation goes way beyond determining the
presence of entanglement, since it shows that nature (obeying quantum
mechanics) is incompatible with the predictions of local realism (classical
physics).

Realism: physical properties/observables have definite values independent of
observation.

Locality: If two physical systems are space-like separated, then an action/mea-
surement performed on A cannot modify the physical description (i.e. measure-
ment results/probabilities) of system B.

• Einstein, Podolsky and Rosen (EPR) envisioned that quantum mechanics
is incomplete and that there must be a more general theory, involving pa-
rameters not currently experimentally accessible (hidden variables), that
satisfies local realism.

• Bell has shown that even the most general classical local hidden variable
theory (LHVT) should satisfy inequalities that are violated by quantum
mechanics.

CHSH inequality (a variant on the original Bell inequality).
Premise:

• Charlie prepares 2 (twin) particles and sends one to Alice and the other
to Bob. This process is repeated many times.

• Alice measures two 2 physical properties, Q and R. These physical ob-
servables produce/give an outcome that is either +1 or −1.

Q = ±1 R = ±1

The values of Q & R for each particle are assumed to be objective prop-
erties, determinedly fixed by the values of hidden variables. Since Alice
has no access to hidden variables, her results are probabilistic.

• Bob measures physical properties S and T

S = ±1 T = ±1

1An ebit is a two-party quantum state with quantum entanglement and the fundamental
unit of bipartite entanglement
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• Alice & Bob are space-like separated and they decide on which measure-
ment to make immediately prior to the measurement. The decision and
measurement is done on a timescale short compared to LAB/c.

• Since Q, R and S, T are objective properties of the twin particles, the
quantity

Q · S +R · S +R · T −Q · T

has a definite value for a given set of hidden variables.

QS +RS +RT −QT = (Q+R) · S + (R−Q) · T

Since R,Q = ±1, either Q + R = 0 or R − Q = 0. In addition since
S, T = ±1, we necessarily have

QS +RS +RT −QT = ±2. (1.5)

• Now, we assume that p(q, r, s, t) is the probability that the system of
twin-particles is found in a state where Q = q, R = r, S = s, T = t.
The probabilities are ultimately determined by the hidden variables that
Charlie (who prepares the twin particles) does not have access to.

⇒ A sequence of experiments on many twin-particles can be used to deter-
mine the expectation value of the observable QS +RS +RT −QT :

E (QS +RS +RT −QT ) =
∑
q,r,s,t

p(q, r, s, t)(qs+ rs+ rt− qt)

using (1.5)

≤ 2
∑
q,r,s,t

p(q, r, s, t) = 2,
(1.6)

In addition,

E (QS +RS +RT −QT ) =
∑
q,r,s,t

p(q, r, s, t)qs+
∑
q,r,s,t

p(q, r, s, t)rs

+
∑
q,r,s,t

p(q, r, s, t)rt−
∑
q,r,s,t

p(q, r, s, t)qt

= E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2,

(1.7)

where, in the first equation, we use the fact that p is independent of which
observable is measured.

∴ If a LHVT description could be used to describe all physical systems, then
the CHSH inequality (1.7) would never be violated.

• We can now consider an analogous setting in quantum mechanics:

– Charlie prepares |Φ+〉 = 1√
2

( AB

|00〉 +
AB

|11〉
)
and sends qubit A (B) to

Alice (Bob).
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– By tossing a coin each time, Alice decides to measure:

T = σA
z

or

R = σA
x

– Bob will also make a completely random choice to measure

S =
(
σB
z + σB

x

)
/
√
2

or

T =
(
−σB

z + σB
x

)
/
√
2

– 〈
Φ+ |QS|Φ+

〉
=

1√
2

〈
Φ+

∣∣σA
z σ

B
z︸ ︷︷ ︸

1

+ σA
z σ

B
x︸ ︷︷ ︸

yields 0

∣∣Φ+
〉

=
1√
2

Similarly 〈RS〉 = 1√
2
= 〈RT 〉 and 〈QT 〉 = − 1√

2

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 = 2
√
2 > 2.

⇒ |Φ+〉 violates Bell-CHSH inequality. Note that {|Φ−〉 , |Ψ+〉} do not
violate this particular inequality. However by changing the measured
observables, we can find a Bell inequality violated by each entangled
pure state.

• Note that the expectation values of type〈
φ
∣∣σA

z ⊗ σB
z

∣∣φ〉
can be obtained either by a joint 2-qubit measurement of σA

z ⊗ σB
z (as we

described earlier - possible only with interactions) or by independent mea-
surements of σA

z & σB
z . The latter destroys the relative phase information

since
[
σA
z , σ

A
x σ

B
x

]
6= 0.

• Experiments in a variety of physical systems (photons, ions, spins) have
been shown to violate Bell’s inequalities, suggesting that either localism
or realism (or both) have to be abandoned.

Entanglement witnesses: For every entangled state ρ̂e, there is an
observable W such that

〈W 〉ρ̂e
= Tr {ρeW} < 0

and Tr {ρsepW} > 0 for all separable states ρ̂sep.

⇒ By measuring W and finding a negative expectation value, we can
determine that the system is entangled.

⇒ Bell’s inequalities could be cast in the form of an entanglement wit-
ness.


