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In this exercise sheet we will prove two things: Grover’s search algorithm for the unstructured
search is quadratically better than any classical algorithm; and no quantum algorithm can
perform the search significantly faster than Grover’s algorithm, i.e. Grover is optimal.

Exercise 1. Warm-up: classical query complexity for unstructured search

As for the ‘quantum data base search’ discussed in the lecture we consider the problem of the
‘classical data base search’ in the following form:

Given an oracleOf for some function f : {0, 1}n → {0, 1} and assuming we are promised
that exactly one input x = w is such that f(w) = 1, find w, i.e.

f(x) =

{
1, if x = w,

0, otherwise.
(1)

The name ‘unstructured search’ says that there is no inherent structure in the data one could
make use of to accelerate the algorithm. In complexity theory it is often asked what is the
minimal number of queries to an oracle necessary to achieve a certain task – this is called the
query complexity.

(a) If we are interested in a deterministic classical algorithm determining w, how often does
this algorithm have to query the oracle in the worst case? Be precise in the argumentation.

(b) Assume we consider algorithms whose output is w only with success probability p. What
is the worst case number of queries?

(c) Conclude that a classical algorithm solving the search problem has to consult the oracle
at least Ω(N) times1.

Exercise 2. Optimality of Grover’s search algorithm in quantum computation

We have seen in the lecture that Grover’s search algorithm consults the oracle only O(
√
N)

times2 (N = 2n). In this exercise we show that no quantum algorithm can perform this task
using fewer than Ω(

√
N) queries, hence Grover’s algorithm is optimal. For simplicity we as-

sume that there is a unique solution. The oracle is then described by the unitary operation
Ũw = 1− 2|w〉〈w|, as encountered in the lecture3.

Suppose the algorithm starts in a state |ψ0〉 and applies the oracle Ũw exactly k times, interleaved
with unitary operations4 U1, . . . , Uk. Define

|ψw
k 〉 = Uk Ũw Uk−1 Ũw · · ·U1 Ũw|ψ0〉, (state with oracle operations) (2)

|ψk〉 = Uk Uk−1 · · ·U1|ψ0〉, (state without oracle operations) (3)

1For two functions h, g one says h = Ω(g), ‘h is Big Omega of g’, if ∃c > 0, ∃N0 s.t. ∀N > N0: h(N) ≥ c ·g(N).
2As a reminder: h = O(g), ‘h is Big O of g’, if ∃c > 0, ∃N0 s.t. ∀N > N0: h(N) ≤ c · g(N).
3The subscript of the oracle is chosen to be w instead of f (as it was done in the lecture) because this simplifies

the notation later and because f is completely defined by w.
4In the Grover algorithm the Uk are all equal to H⊗nŨ0H

⊗n, where Ũ0 is the new notation for Ũf0 .
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and define the deviation after k steps caused by the oracle as

Dk =
∑
w

∥∥|ψw
k 〉 − |ψk〉

∥∥2. (4)

If Dk is small there is only a small difference between |ψw
k 〉 and |ψk〉 and it is not possible to

correctly identify w with high probability.

(a) Using Eqs. (5.1) and (6), show that Dk ≤ 4k2 by induction.

(b) Assume that for all possible functions f , i.e. all possible w, an observation yields a solution
to the search with probability at least 1/2. This is, |〈w|ψw

k 〉|2 ≥
1
2 for all w. Furthermore,

assume5 〈w|ψw
k 〉 = |〈w|ψw

k 〉|. Using Eqs. (5.2) and (7), show that in this case Dk ≥ cN for
some c and sufficiently large N .

Together these two points prove that k = Ω(
√
N) if the algorithm is to succeed, hence any

quantum algorithm solving the search problem has to query the oracle at least Ω(
√
N) times.

Hints:

(i) The Cauchy-Schwarz inequality is helpful in various steps of this exercise.

(ii) For any two vectors a, b in a Hilbert space H, show that

‖a+ b‖2 ≤ ‖a‖2 + ‖b‖2 + 2‖a‖‖b‖ and ‖a+ b‖2 ≥ ‖a‖2 + ‖b‖2 − 2‖a‖‖b‖. (5)

(iii) Let {ai}N−1
i=0 be an orthonormal basis of an N -dimensional Hilbert space H with inner

product (· , ·) and b ∈ H normalized. Then∑
i

|(ai, b)|2 = 1. (6)

(iv) Same setting as in (iii) with N = dim(H), show that∑
i

‖b− ai‖2 ≥ 2N − 2
√
N. (7)

5Replacing |w〉 with eiθ|w〉 does not change the probability of success, so w.l.o.g. we may assume that 〈w|ψwk 〉 =
|〈w|ψwk 〉|.
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