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Exercise 1. No-go theorem I: the no-programming theorem

In the lecture we have seen the most famous example of a quantum no-go theorem: the no-
cloning theorem. However, there are more theorems of this type showing that there are certain
tasks that are possible in a classical setting but cannot be achieved for general quantum systems.
In this exercise we will prove that it is impossible to build a programmable quantum gate array,
i.e., to construct fixed circuits that take as input a quantum state specifying a quantum program
and a data register to which the unitary U corresponding to the quantum program is applied.

The input given to the programmable quantum gate array may have the form

|d〉 ⊗ |PU 〉

where |d〉 is the m-qubit data register and |PU 〉 is a state of the n-qubit program register. The
total dynamics of the programmable gate array is given by a unitary operator G

|d〉 ⊗ |PU 〉 → G[|d〉 ⊗ |PU 〉] = (U |d〉)⊗ |P ′
U 〉.

G
|PU 〉

|d〉

|P ′
U 〉

U |d〉

(a) Show that |P ′
U 〉 must be independent of the input state |d〉.

(b) Suppose that distinct unitary operators U1, U2, . . . , UN are implemented.

(i) Show that if the expression 〈d|U †
i Uj |d〉 is independent of |d〉 then U †

i Uj = γ · id must
hold.

(ii) Use the result (i) to show that the corresponding programs |PU1〉, |PU2〉, . . . , |PUN
〉

must be mutually orthogonal.

(iii) Discuss why this implies that there cannot exist a programmable quantum gate array
that works for arbitrary inputs U .

(c) The result above shows that no deterministic universal quantum gate array exists. We will
see now that the task is possible in a probabilistic fashion. For simplicity we only consider
the case m = 1. Show that

|PU 〉 = (id⊗ U)|Φ+〉12
can be used to successfully implement the desired transformation with probability 1/4.

Hint. Consider a measurement of the data register and the first subsystem of the program
register w.r.t. the Bell basis.
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Exercise 2. No-go theorem II: unknown operations cannot be controlled in quan-
tum circuits

The quantum analogue of the “if”-statement in classical computer programs is the control of
a unitary operation U depending on the value of a control qubit. This is represented by the
transformation

(α|0〉C + β|1〉C)|ψ〉 7→ α|0〉C |ψ〉+ β|1〉CU |ψ〉,

where C is the control qubit and |ψ〉 is the initial state of the target system.

In this exercise we will show that there is no quantum circuit that can implement the controlled
U gate, given as input a single copy of the unknown d×d gate U . Thus, the question is whether
there exist unitaries A and B such that the following circuit identity is satisfied.

|0〉a
A B

U

?
=

U

WU|0〉a

(a*) Show that the above identidy cannot be satisfied. In order to see this note that on the
lhs substituting U with eiφU does not produce any physical difference, but the same
substitution on the rhs produces a relative phase. Therefore it is only meaningful to ask
whether a circuit can implement the control-U modulo this global phase. The matrix
representation of the control-U is given by idd⊕U . Defining |U〉a := WU |0〉a the question
is whether the identity

B(ida ⊗ id2 ⊗ U)A|0〉a = |U〉A(idd ⊕ eiuU)

holds for some arbitrary phase factor eiu. Show now that this equality cannot be satisfied
for the qubit unitaries X, Z, αX + βZ, αX + βY and αY + βZ simultaneously (α and β
are real numbers such that α2 + β2 = 1).

(b) Unlike for the no-cloning theorem, this no-go theorem does not prevent quantum control
of unknown operations from being performed in practice. Explain how the circuit below
implements a controlled unitary transformation.

(α|H〉+ β|V 〉)|ψ〉

U

PBS

PBS

Here |H〉 and |V 〉 represent horizontal and vertical polarization states of a photon and the
PBSs are polarizing beam splitters.

(c) How does this interferometric implementation circumvent the no-go theorem we have just
proved?
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