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Exercise 1. No-go theorem I: the no-programming theorem

In the lecture we have seen the most famous example of a quantum no-go theorem: the no-
cloning theorem. However, there are more theorems of this type showing that there are certain
tasks that are possible in a classical setting but cannot be achieved for general quantum systems.
In this exercise we will prove that it is impossible to build a programmable quantum gate array,
i.e., to construct fixed circuits that take as input a quantum state specifying a quantum program
and a data register to which the unitary U corresponding to the quantum program is applied.

The input given to the programmable quantum gate array may have the form
|d) ® [Pu)

where |d) is the m-qubit data register and |Py) is a state of the n-qubit program register. The
total dynamics of the programmable gate array is given by a unitary operator G

|d) ® |Pu) = Glld) @ [Pu)] = (Uld)) ® |Pp).

|d) —— —— Uld)

[Pu)

— |Py)

(a) Show that |P};) must be independent of the input state |d).

(b) Suppose that distinct unitary operators Uy, Us,..., Uy are implemented.
(i) Show that if the expression (d|UiTUj|d) is independent of |d) then UiTUj = v -id must
hold.
(ii) Use the result (i) to show that the corresponding programs |Py,), |Puy)s-- -, |Puy)

must be mutually orthogonal.

(iii) Discuss why this implies that there cannot exist a programmable quantum gate array
that works for arbitrary inputs U.

(c) The result above shows that no deterministic universal quantum gate array exists. We will
see now that the task is possible in a probabilistic fashion. For simplicity we only consider
the case m = 1. Show that

Pu) = (id @ U)|27)1z

can be used to successfully implement the desired transformation with probability 1/4.

Hint. Consider a measurement of the data register and the first subsystem of the program
register w.r.t. the Bell basis.



Exercise 2. No-go theorem II: unknown operations cannot be controlled in quan-
tum circuits

The quantum analogue of the “if”-statement in classical computer programs is the control of
a unitary operation U depending on the value of a control qubit. This is represented by the
transformation

(al0)c + BIL)c)v) = al0)cly) + BI1)cUlY),
where C' is the control qubit and [¢) is the initial state of the target system.

In this exercise we will show that there is no quantum circuit that can implement the controlled
U gate, given as input a single copy of the unknown d x d gate U. Thus, the question is whether
there exist unitaries A and B such that the following circuit identity is satisfied.

10)a— — |0 WU —
— 4 B — = — ——
] U — — U —

(a*) Show that the above identidy cannot be satisfied. In order to see this note that on the
lhs substituting U with ¢?U does not produce any physical difference, but the same
substitution on the rhs produces a relative phase. Therefore it is only meaningful to ask
whether a circuit can implement the control-U modulo this global phase. The matrix
representation of the control-U is given by idy @ U. Defining |U), := Wy/|0), the question
is whether the identity

B(id, ® idy ® U)A|0) = |U) a(idg ® e™U)

holds for some arbitrary phase factor e’*. Show now that this equality cannot be satisfied
for the qubit unitaries X, Z, aX + Z, aX + Y and aY + Z simultaneously (a and
are real numbers such that a? 4 5% = 1).

(b) Unlike for the no-cloning theorem, this no-go theorem does not prevent quantum control
of unknown operations from being performed in practice. Explain how the circuit below
implements a controlled unitary transformation.

U
D : PBS
@H)+BV) /

PBS
Here |H) and |V') represent horizontal and vertical polarization states of a photon and the
PBSs are polarizing beam splitters.

(c) How does this interferometric implementation circumvent the no-go theorem we have just
proved?



