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Exercise 1. Favesdropping quantified

(a)

Consider the following setting.

Alice and Bob are given a choice between two different coins; Alice can toss either coin
Ag or coin A, and Bob, either By or Bs. For each toss each party must choose one of the
two; tossing both Ag and Ay or both By and Bs is forbidden.

Suppose that Eve wants to manufacture a device that outputs values, Z, designed to tally
with Ag. Show that Eve has limited chances to succeed by proving the inequality

Pr(Z = Ao) < 5 (14 1), (1

where

Iy = PI‘(A() 7é Bl) + Pl“(Bl # AQ) + PI‘(AQ ;é Bg) + PI'(B3 = Ao)
Hint. Show and use the following inequality

PI‘(AZ = Z) — PI‘(Bj = Z) < PI‘(AZ 75 Bj) 1€ {0,2},j S {1,3}.

The scenario can be generalised as follows: Alice has now the choice among N > 2 different
coins A; indexed by i € {0,2,...,2N — 2}. Similarly, Bob has the choice between N coins
Bj labelled by t j € {1,3,...,2N —1}. As before Alice and Bob can only toss one of their
coins at the same time.

Show that for N measurements
1
Pr(Z = Ap) < 5(1—1—[1\7), (2)

where

Iy =Pr(Ag = Ban-1) + »_ Pr(A;i# By) (3)
li—jl=1

holds.

We will now see that quantum systems can be used to achieve Iy — 0. Alice and Bob
share a qubit in a maximally entangled state

1
Eﬂ M+ 1)

Alice’s coin toss is implemented by a measurement w.r.t. {Eé, E{} on her qubit, where Ef
is the projector onto state |55 7) (corresponding to outcome “0”), and E7 is the projector
onto state | (g5 + 1) 7) (corresponding to outcome “17), with |f) = cos §| 1) +sin &| |).
The same holds for Bob’s measurements B;.

Show that,
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Iy = 2N sin?
N sin AN
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Exercise 2. Stronger than quantum correlations: The PR-Box

Let us consider again the case of two coins with correlations summarised by the following table.

Alice AO A2
Bob 0 1 0 1
1 1T
B, 0|35—c¢ 16 5 — € 16

1 € ?—6 16 5 —€
By 0 16 53—€|5—€ 16
1 5 —€ € € 5 — €

The entries in the tables correspond to the conditional probabilities of the joint outcomes, e.g.
he first entry means Pxy4,p, ((z,y) = (0,0)) = 3 — €

We have seen in the lecture that these correlations can be created within quantum mechanics
for € = 1 sin?(7/8) ~ 0.07.

In the following we will denote by X € {0, 1} the outcome of Alice’s coin toss and by Y € {0,1}
the outcome of Bob’s coin toss.

(a) Correlations of the above form that exist within quantum theory cannot be created clas-
sically. However, they are not the most general distributions we could consider if we are
only constrained by the no-signalling principle: there are in fact other joint distributions
that cannot be obtained by measurements on a quantum state, but that nonetheless would
not allow for instantaneous information transmission over distance (signalling)

Pxa,B, (%) = Px|a, (), for i € {0,2},2 € {0,1}.

To see this, look at the following joint probability distribution for ¢ = 0, a so-called PR

box:
Alice | Ap As
Bob g [1) 2 (1)
Bs 1 00 .

Show that the PR box
(i) is non-signalling

(ii) is non-local: Pxy|a,p, # Px|a,Py|B;;
(iii) yields Iy = 0.

(b) We shall now see how the above quantum correlation (coming from the Bell state) can be
simulated using such a PR box combined with deterministic strategies. Imagine that Alice
and Bob apply the following strategy:

e with probability 1 — p a PR-box;



e with probability p/4, one of four deterministic boxes, that always outcome 00, 01, 10
and 11 respectively.

Find p so that the final joint probability distribution equals the one of the Bell state given
above.



