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Exercise 1. Eavesdropping quantified

(a) Consider the following setting.

Alice and Bob are given a choice between two different coins; Alice can toss either coin
A0 or coin A2 and Bob, either B1 or B3. For each toss each party must choose one of the
two; tossing both A0 and A2 or both B1 and B3 is forbidden.

Suppose that Eve wants to manufacture a device that outputs values, Z, designed to tally
with A0. Show that Eve has limited chances to succeed by proving the inequality

Pr(Z = A0) ≤
1

2
(1 + I2) , (1)

where
I2 = Pr(A0 6= B1) + Pr(B1 6= A2) + Pr(A2 6= B3) + Pr(B3 = A0).

Hint. Show and use the following inequality

Pr(Ai = Z)− Pr(Bj = Z) ≤ Pr(Ai 6= Bj) i ∈ {0, 2}, j ∈ {1, 3}.

The scenario can be generalised as follows: Alice has now the choice among N ≥ 2 different
coins Ai indexed by i ∈ {0, 2, . . . , 2N − 2}. Similarly, Bob has the choice between N coins
Bj labelled by t j ∈ {1, 3, . . . , 2N − 1}. As before Alice and Bob can only toss one of their
coins at the same time.

(b) Show that for N measurements

Pr(Z = A0) ≤
1

2
(1 + IN ) , (2)

where

IN = Pr(A0 = B2N−1) +
∑
|i−j|=1

Pr(Ai 6= Bi) (3)

holds.

(c) We will now see that quantum systems can be used to achieve IN → 0. Alice and Bob
share a qubit in a maximally entangled state

1√
2

(| ↑↑〉+ | ↓↓〉).

Alice’s coin toss is implemented by a measurement w.r.t. {Ei0, Ei1} on her qubit, where Ea0
is the projector onto state | i2N π〉 (corresponding to outcome “0”), and Ei1 is the projector

onto state |
(
i

2N + 1
)
π〉 (corresponding to outcome “1”), with |θ〉 = cos θ2 | ↑〉+ sin θ

2 | ↓〉.
The same holds for Bob’s measurements Bj .

Show that,

IN = 2N sin2 π

4N
≤ π2

8N
. (4)
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Exercise 2. Stronger than quantum correlations: The PR-Box

Let us consider again the case of two coins with correlations summarised by the following table.

Alice A0 A2

Bob 0 1 0 1

B1
0 1

2 − ε ε 1
2 − ε ε

1 ε 1
2 − ε ε 1

2 − ε

B3
0 ε 1

2 − ε
1
2 − ε ε

1 1
2 − ε ε ε 1

2 − ε

The entries in the tables correspond to the conditional probabilities of the joint outcomes, e.g.
he first entry means PXY |A0B1

((x, y) = (0, 0)) = 1
2 − ε.

We have seen in the lecture that these correlations can be created within quantum mechanics
for ε = 1

2 sin2(π/8) ≈ 0.07.

In the following we will denote by X ∈ {0, 1} the outcome of Alice’s coin toss and by Y ∈ {0, 1}
the outcome of Bob’s coin toss.

(a) Correlations of the above form that exist within quantum theory cannot be created clas-
sically. However, they are not the most general distributions we could consider if we are
only constrained by the no-signalling principle: there are in fact other joint distributions
that cannot be obtained by measurements on a quantum state, but that nonetheless would
not allow for instantaneous information transmission over distance (signalling)

PX|AiB1
(x) = PX|Ai

(x), for i ∈ {0, 2}, x ∈ {0, 1}.

To see this, look at the following joint probability distribution for ε = 0, a so-called PR
box:

Alice A0 A2

Bob 0 1 0 1

B1
0 1

2 0 1
2 0

1 0 1
2 0 1

2

B3
0 0 1

2
1
2 0

1 1
2 0 0 1

2

Show that the PR box

(i) is non-signalling

(ii) is non-local: PXY |AiBj
6= PX|Ai

PY |Bj
;

(iii) yields IN = 0.

(b) We shall now see how the above quantum correlation (coming from the Bell state) can be
simulated using such a PR box combined with deterministic strategies. Imagine that Alice
and Bob apply the following strategy:

• with probability 1− p a PR-box;
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• with probability p/4, one of four deterministic boxes, that always outcome 00, 01, 10
and 11 respectively.

Find p so that the final joint probability distribution equals the one of the Bell state given
above.
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