Exercise 1. Eavesdropping quantified

(a) Consider the following setting.

Alice and Bob are given a choice between two different coins; Alice can toss either coin A_{0} or coin A_{2} and Bob, either B_{1} or B_{3}. For each toss each party must choose one of the two; tossing both A_{0} and A_{2} or both B_{1} and B_{3} is forbidden.

Suppose that Eve wants to manufacture a device that outputs values, Z, designed to tally with A_{0}. Show that Eve has limited chances to succeed by proving the inequality

$$
\begin{equation*}
\operatorname{Pr}\left(Z=A_{0}\right) \leq \frac{1}{2}\left(1+I_{2}\right), \tag{1}
\end{equation*}
$$

where

$$
I_{2}=\operatorname{Pr}\left(A_{0} \neq B_{1}\right)+\operatorname{Pr}\left(B_{1} \neq A_{2}\right)+\operatorname{Pr}\left(A_{2} \neq B_{3}\right)+\operatorname{Pr}\left(B_{3}=A_{0}\right) .
$$

Hint. Show and use the following inequality

$$
\operatorname{Pr}\left(A_{i}=Z\right)-\operatorname{Pr}\left(B_{j}=Z\right) \leq \operatorname{Pr}\left(A_{i} \neq B_{j}\right) \quad i \in\{0,2\}, j \in\{1,3\} .
$$

The scenario can be generalised as follows: Alice has now the choice among $N \geq 2$ different coins A_{i} indexed by $i \in\{0,2, \ldots, 2 N-2\}$. Similarly, Bob has the choice between N coins B_{j} labelled by $\mathrm{t} j \in\{1,3, \ldots, 2 N-1\}$. As before Alice and Bob can only toss one of their coins at the same time.
(b) Show that for N measurements

$$
\begin{equation*}
\operatorname{Pr}\left(Z=A_{0}\right) \leq \frac{1}{2}\left(1+I_{N}\right), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{N}=\operatorname{Pr}\left(A_{0}=B_{2 N-1}\right)+\sum_{|i-j|=1} \operatorname{Pr}\left(A_{i} \neq B_{i}\right) \tag{3}
\end{equation*}
$$

holds.
(c) We will now see that quantum systems can be used to achieve $I_{N} \rightarrow 0$. Alice and Bob share a qubit in a maximally entangled state

$$
\frac{1}{\sqrt{2}}(|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle)
$$

Alice's coin toss is implemented by a measurement w.r.t. $\left\{E_{0}^{i}, E_{1}^{i}\right\}$ on her qubit, where E_{0}^{a} is the projector onto state $\left.\frac{i}{2 N} \pi\right\rangle$ (corresponding to outcome " 0 "), and E_{1}^{i} is the projector onto state $\left|\left(\frac{i}{2 N}+1\right) \pi\right\rangle$ (corresponding to outcome " 1 "), with $|\theta\rangle=\cos \frac{\theta}{2}|\uparrow\rangle+\sin \frac{\theta}{2}|\downarrow\rangle$. The same holds for Bob's measurements B_{j}.

Show that,

$$
\begin{equation*}
I_{N}=2 N \sin ^{2} \frac{\pi}{4 N} \leq \frac{\pi^{2}}{8 N} . \tag{4}
\end{equation*}
$$

Exercise 2. Stronger than quantum correlations: The PR-Box

Let us consider again the case of two coins with correlations summarised by the following table.

Alice		A_{0}		A_{2}	
Bob	0	1	0	1	
B_{1}	0	$\frac{1}{2}-\epsilon$	ϵ	$\frac{1}{2}-\epsilon$	ϵ
	1	ϵ	$\frac{1}{2}-\epsilon$	ϵ	$\frac{1}{2}-\epsilon$
B_{3}	0	ϵ	$\frac{1}{2}-\epsilon$	$\frac{1}{2}-\epsilon$	ϵ
	1	$\frac{1}{2}-\epsilon$	ϵ	ϵ	$\frac{1}{2}-\epsilon$

The entries in the tables correspond to the conditional probabilities of the joint outcomes, e.g. he first entry means $P_{X Y \mid A_{0} B_{1}}((x, y)=(0,0))=\frac{1}{2}-\epsilon$.

We have seen in the lecture that these correlations can be created within quantum mechanics for $\epsilon=\frac{1}{2} \sin ^{2}(\pi / 8) \approx 0.07$.

In the following we will denote by $X \in\{0,1\}$ the outcome of Alice's coin toss and by $Y \in\{0,1\}$ the outcome of Bob's coin toss.
(a) Correlations of the above form that exist within quantum theory cannot be created classically. However, they are not the most general distributions we could consider if we are only constrained by the no-signalling principle: there are in fact other joint distributions that cannot be obtained by measurements on a quantum state, but that nonetheless would not allow for instantaneous information transmission over distance (signalling)

$$
P_{X \mid A_{i} B_{1}}(x)=P_{X \mid A_{i}}(x), \text { for } i \in\{0,2\}, x \in\{0,1\} .
$$

To see this, look at the following joint probability distribution for $\epsilon=0$, a so-called PR box:

Alice		A_{0}		A_{2}	
Bob		0	1	0	1
B_{1}	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0
	1	0	$\frac{1}{2}$	0	$\frac{1}{2}$
B_{3}	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0
	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$

Show that the PR box
(i) is non-signalling
(ii) is non-local: $P_{X Y \mid A_{i} B_{j}} \neq P_{X \mid A_{i}} P_{Y \mid B_{j}}$;
(iii) yields $I_{N}=0$.
(b) We shall now see how the above quantum correlation (coming from the Bell state) can be simulated using such a PR box combined with deterministic strategies. Imagine that Alice and Bob apply the following strategy:

- with probability $1-p$ a PR-box;
- with probability $p / 4$, one of four deterministic boxes, that always outcome $00,01,10$ and 11 respectively.

Find p so that the final joint probability distribution equals the one of the Bell state given above.

