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Exercise 1. Electrostatic potential from a dipole

Figure 1: Potential at large distance from the charge distribution

1. The general expression for the potential is given by,

Φ(x) =
1

4πε0

∫
ρ(x′)

|x− x′|
d3x′. (1)

Show that at large distances from the charge distribution (|x| � |x′|), as it is shown in
figure 1, the potential can be approximated by

Φ(x) =
1

4πε0

[q
r

+
p · x
r3

+ . . .
]
. (2)

Where r = |x| , q is the total charge and p is the electric dipole moment, defined by

p =

∫
x′ρ(x′)d3x′ (3)

Solution. The solution for the potential is given by making a Taylor expansion of 1/|x− x′|, i.e.

1

|x− x′| =
1

|x| +
x · x′

|x|3 + . . . (S.1)

The final expression then follow directly.

2. Calculate the potential of the following configurations (see figure 2 for (a) and (b) and
figure 3 for (c).) by applying (2),

(a) Two identical point charges with opposite sign at distance d.

Solution. We choose the origin to be at the place of the negative charge, then the dipole is simple

given by

p = q d ed (S.2)

where ed is the unit vector pointing from q− to q+. The potential Φ follows directly.

(b) The potential given by a molecule of water (dOH = 0, 96.10−10m , θ = 104, 5 ,
QO− = −0, 66 e and QH+ = 0, 33 e)
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Figure 2: Different examples of dipoles

Solution. By symmetry is the dipole in the direction from the oxygen atom to the middle between

the two hydrogen charges. We can then calculate directly the vertical component of p, again we

choose the coordinate system such that the origin is placed on the oxygen charge,

pz = 2d cos(
θ

2
)QH+ = 2 · 0, 96.10−10m · cos(

104,5·π
180

2
) · 0, 33 · 1, 6.10−19C = 6, 2.10−30Cm (S.3)

(c) Four charges forming two dipoles, according to figure 3. For which angles θ1 and θ2
and distances d1 = |d1| and d2 = |d2| is the total dipole moment vanishing? How are
the dipoles disposed in that case?

Solution. We choose the origin to be at the place of the positive charge in the left. Then we have

p = p1 + p2 + p3 (S.4)

= −qd1

(
cos(θ1)

sin(θ1)

)
+

(
rq

0

)
+ (−q)

(
r − d2 cos(π − θ2)

d2 sin(π − θ2)

)
(S.5)

= −qd1

(
cos(θ1)

sin(θ1)

)
− qd2

(
cos(θ2)

sin(θ2)

)
(S.6)

We see that if θ1 = π/2, θ2 = (3π)/2 and d1 = d2, then the total dipole moment vanishes. This

correspond also to dispose the four charges on a square.

Exercise 2. Van der Waals forces between 2 dipoles

In this exercise we will see how the van der Waals forces between two molecules or atoms emerge.
To this end, consider the situation depicted in the Figure 3.

Let r be the vector connecting the 2 positive charges (of the charge +q each), and d1 and d2

the vectors connecting each positive charge with a negative charge (−q) it forms a dipole with.

1. To start with, write down the expression for the total energy of the system. In total you
should get the contribution from 6 terms. Make sure that each of them comes with a
correct sign.
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Figure 3: The system consisting of 2 dipoles.

Solution. The following terms contribute:

4πε0U = q2
(

1

|r| +
1

|r + d2 − d1|
− 1

|d1|
− 1

|d2|
− 1

|r + d2|
− 1

|d1 − r|

)
(S.7)

First comes from the interaction of two positive charges, the 2nd from two negative charges, and the rest

are all the possible interactions between positive and negative charges (just follow the vectors to know

which is which :) ).

2. Now prove that for |r| >> |a| we have the following expansion:

1

|r + a|
=

1

|r|

(
1− r̂ · a

|r|

)
+

1

2|r|3
(
3(r̂ · a)2 − |a|2

)
+O

((
|a|
|r|

)3
)

(4)

Solution. This is rather straightforward. We first need:

1√
1 + x

= 1− x

2
+

3x2

8
+O(x3) (S.8)

And then:
1

|r − a| =
1

r
√

1 + 2a·r̂
r

+ a2

r2

(S.9)

where r̂ = r
|r| . Combining those two formulas we get the desired result:

1

|r − a| =
1

|r|

(
1− a · r̂

|r| −
a2

2|r|2 +
3(a · r̂)2

2|r|2

)
+... =

1

|r|

(
1− a · r̂

|r|

)
+

1

2|r|3
(
3(a · r̂)2 − |a|2

)
+O

((
|a|
|r|

)3
)

(S.10)

3. Use the result of the previous point to simplify the expression for the energy of the
configuration you obtained in the first part of the exercise. To this end, assume that
|r| >> |d1|, |d2|.

Solution. We really just blindly use the given formula for the terms 1
|r−d1|

, 1
|r+d2|

and 1
|r+d2−d1|

. Most

of the terms simplify and we are left with:

4πε0U = − q2

|d1|
− q2

|d2|
− q2

|r|3
(
3(a · r̂)2 − d1 · d2

)
(S.11)

4. In the new expression you have just obtained identify the terms that are due to the
interactions between two dipoles. We will call their sum the interaction energy Uint.
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Solution. Clearly the first two terms in the energy are due to the inner energy of the respective dipoles,

and so the third term is the one responsible for the interaction energy.

5. Now express the scalar products between the vectors r, d1, d2 using trigonometric func-
tions in order to obtain for the Uint the following expression:

Uint =
q2

4πε0

|d1||d2|
|r|3

(sin θ1 sin θ2 − 2 cos θ1 cos θ2) (5)

Solution. Clearly we have d1,2 · r̂ = |d1,2| cos θ1,2. Also, the angle between d1 and d2 is equal to θ2− θ1.

Therefore d1 · d2 = |d1||d2| cos θ2 − θ1 = |d1||d2|(cos θ1 cos θ2 + sin θ1 sin θ2). Plug this into the formula

given two solutions above to obtain the desired result.

6. The physical systems tend to minimize the interaction energy. Find the values of θ1 and
θ2 such, that Uint is at it’s lowest.

Solution. The energy will be at the minimum when θ1,2 = 0, which corresponds to all the charges

positioned at one axis in the order (+-+-).

7. Finally calculate the force F with which the dipoles act at each other (assume that the
angles θ1,2 already satisfy the minimizing condition you found in the previous part) by the
means of the formula F = −∇Uint. This is a good approximation as long as the distance
between the dipoles is large enough. What further corrections should we include if the
dipoles come closer to each other?

Solution. In the minimum the interaction energy is equal to:

Uint =
−q2|d1||d2|

2πε0|r|3
(S.12)

Taking the derivative with respect to r (and an additional minus sign, since F = − dU
dr

) we obtain:

F = −3q2d1||d2|
2πε0r4

(S.13)

thus getting the binding (well, actually the fact that the dipole is stable was already clear from the Uint
at minimums). If r decreases too much, we should add higher order terms in the expansions performed

earlier on, as well as possibly consider quantum corrections.

Exercise 3. Magnetic dipole

Consider a square current loop in the xy-plane of side a. The center of the square is placed in
the origin and the sides are parallel to the coordinate-axes.

x

y

z

a

a I
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1. Show that for r � a the vector potential ~A is

~A(~r) =
µ0
4π

~µ× ~r
r3

, (6)

where ~µ = a2I~ez and I is the intensity of the current that flows in the loop.

Hint: ~A(~r) = µ0I
4π

∫
γ

d~r ′

|~r−~r ′| .

Solution. The path γ along the loop can be parametrized in the following way:

γ = γ1 + γ2 + γ3 + γ4, (S.14)

where

~γ1(t) =
a

2

0

1

0

− t
1

0

0

 − a

2
≤ t ≤ a

2
,

~γ2(t) = −a
2

1

0

0

− t
0

1

0

 − a

2
≤ t ≤ a

2
,

~γ3(t) = −a
2

0

1

0

+ t

1

0

0

 − a

2
≤ t ≤ a

2
,

~γ4(t) =
a

2

1

0

0

+ t

0

1

0

 − a

2
≤ t ≤ a

2
.

The i-th part of the integral is then

~Ai(~r) :=
µ0I

4π

∫
γi

d~r ′

|~r − ~r ′| . (S.15)

The first part evaluates to

~A1(~r) =
µ0I~ex

4π

∫ a/2

−a/2

−dt√
(x+ t)2 + (y − a

2
)2 + z2

=
µ0I~ex

4π

∫ a/2

−a/2

−dx′√
x2 + y2 + z2 + 2xt+ t2 − ay + a2

4

≈ µ0I~ex
4π

∫ a/2

−a/2

−dt
r

(
1− xt

r2
+

ay

2r2

)
,

where in the last step we used r =
√
x2 + y2 + z2 � a. Similarly we find

~A3(~r) ≈ µ0I~ex
4π

∫ a/2

−a/2

dt

r

(
1 +

xt

r2
− ay

2r2

)
.

Hence

~A1(~r) + ~A3(~r) =
µ0I~ex
4πr3

∫ a/2

−a/2
dt (2xt− ay) = −µ0Ia

2

4πr3
y~ex.

On the other hand

~A2(~r) + ~A4(~r) =
µ0Ia

2

4πr3
x~ey.

The total vector potential is

~A(~r) =
µ0Ia

2

4πr3
(−y~ex + x~ey) =

µ0

4π
Ia2

~ez × ~r
r3

2. Compute the magnetic field ~B for r � a and compare it to the electric field ~E of an electric
dipole.
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Solution. Using that ~r
r3

= −∇ 1
r

and that ~µ is constant, we get(
∇×

(
~µ×∇1

r

))
i

= εijkεklmµl∂j∂m
1

r

= (δilδjm − δimδjl)µl∂m∂j
1

r

= µi∂m∂m
1

r
− ∂mµj∂j

1

r
.

In vector notation

∇×
(
~µ×∇1

r

)
= ~µ∆

1

r
−∇

(
~µ · ∇1

r

)
= −4πδ(r)~µ+∇

(
~µ · ~r

r3

)
= −4πδ(r)~µ+

~µ

r3
− 3

~µ · ~r
r5

~r.

Since we approximated the vector potential for r � a, the magnetic field is valid only in the region far

from the origin, hence the δ-function term doesn’t add any contribution.

It follows that, the magnetic field is

~B(~r) = ∇× ~A(~r) =
µ0

4π

(
3
~µ · ~r
r5

~r − ~µ

r3

)
, (S.16)

which is similar to the electric field of a dipole

~E(~r) =
1

4πε0

(
3
~p · ~r
r5

~r − ~p

r3

)
, (S.17)

Exercise 4. The Cosmic Microwave Background (CMB) Sky

The theoretical and experimental CMB power spectra are customarily presented in the context
of spherical harmonic multipoles. In the following link

http://find.spa.umn.edu/~pryke/logbook/20000922/

you can find examples of multipoles plots and an application to the CMB Sky. Read it carefully
and try to understand the link between harmonic multipoles and one of their application in
cosmology.
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