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Exercise 1. Relativistic particle in a constant, uniform magnetic field

Consider a point particle with mass m, charge g, initial velocity v and initial position xg, moving
in a constant, uniform magnetic field B = B €., parallel to the z axis. Let the 4-momentum be

p* = (£,p).

1. Show that the energy of the particle is constant in time, e.g.

E=0.

2. Find the trajectory of the particle.

3. What are the differences between the classical and the relativistic trajectory?

Solution.

1. In general, we can always write that

d, . d, 24
— = — =0.
D) = ()
Therefore
d 1.d d
0=p" —p.==E—E—-p-—p-
PrgPe = @%a TP an
Knowing that p = F and that v = C%’, we get that
E=F.v.
Since the magnetic force is orthogonal to v, then & = 0.
2. The relativistic equations of motion
d
—p=F, S.1
P (s.1)
in this case are just
p=gvxB,
with initial conditions
x(t = 0) = xo0 = (20, Y0, 20), v(t =0) = vo = (V0,4 Vo,y, V0,2)-
The equations of motion can be recast as
dv ¢
-_— == x B
at ¢V
since £ is constant. In components, it becomes
dvg duy v dv,
=w —, — WUz, —/— =V,
dt Y de dt
where w = #.

The equation for the z direction has the simple solution
z(t) = zo + vo,xt.
For the transverse directions, we can rewrite the equations as

d . ) )
E(UI + vy) = —iw(vs + vy),



whose solution is

. —q t
Vg +ivy =ae ¥

(S.2)
a is of course a = v,z + 1V,,y, but in order to get the trajectory, it’s better to rewrite it as
a = |ale™",
where o = arctan (z—z) Then, we can integrate eq. (S.2) and get
o(t) +iy(y) = 1 et g, (5.3
where qo is a complex integration constant. Then, we can get =, y by taking Re, Im of the complex
solution:

z(t) :|%| sin(wt + a) + Re(qo),
(1) =% cos(wt + @) + Tm(qo),

where Re(qo) and Im(qo) are the algebraic solutions to the equations z(t = 0) = zo, y(t =0) = yo.
It is thus evident that the trajectory is a spiral whose axis is parallel to the direction of the magnetic field.

3. The classical trajectory is also a spiral with axis parallel to B; however, the classical frequency is weq

which is (of course) the nonrelativistic limit of our w (recall w = %)
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Exercise 2. Lorentz transformations for the Electromagnetic field

a) Prove that under a general Lorentz transformation the E and B fields transform as follows:

B =(B+efx B) - 40 B) 1)
— — — — 2 - = —
B’=V(B—c‘15><E)—#B(5 B), (2)

where § = ¥/e, v = (1 —%)"1/2 and ¢ is the speed of light.

Solution. We have

ynz v o
F'"™ = AL AYF?
where A is given by

7 —7 Bx ) v By —B. ]

In components:



FO = —E" = AOAL 7

where we use

= AQAL F% + A) AL F*

= AQA] FO + AR A F* 4 AR A} FM
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and the antisymmetry of F*!. Then we have

For the B field

Fij, _

and hence

b) Argue what happens
transformation.

Solution. Since
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to the angle between the E and B fields under a general boost

o]
w5l



is Lorentz invariant, and the angle between the fields is given by

-

|B| |E]

then 6 in general will change, unless, the fields are orthogonal in the original frame.

Exercise 3. FElectrodynamics in a Covariant formalism

a) Given the electromagnetic field tensor F*¥ with components
FOi — _Eni7 Fij — —GijkBk, o= _Fu,u7
with €193 = +1, compute

v loa
€uvpo F1 FP

1
-1 FHv Fu,

in terms of the £ and B fields.

Solution.

(a)
F" Fuy = F* Fo, + F" F1, + F* Fy, + F* F3,

:F00F00+(F01F01+---+F03F03)+(F10F10—|—---+F30F30)
~—_——

0 _E2 —_E2

(S.6)
(S.7)

+ (F“F11+»~+F13F13) + (F21F21+~»+F23F23) + (F31F31+-~+F33F33)

BZ+B2 B2+B2

= _2F%+2B?

(b) Let us first define a new tensor,
F) = o™
( Ao EurA

and calculate the components,
= _ v 23 32 23 32
(F)m = €01 F" = €2301 F7 4 €3201 F°° = €0123F" — €123 F
23 23 23
= €023 + €123 F =2 F° = -2 B,.

Analogous we find for the others non vanishing components

(F)02 - 2B,
(F)OS =-2B.
(F)u = 2E.
(F)l =28,
()

w

=-2FE,
23

Computing now the full expression we get

—

Cuvro FH A7 = (F) F -8B . F.
Ao
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(S.18)



b) Show that all the Maxwell equations

are equivalent to

a,uFV)\ + 8,,FM + 6,\FW =0

Solution.
(a) For p=0,v =14, A\ =k we have

o Fik + 0; Fo + Ok Foi = 0

— ao(Eiszl) - aiEk + 8kEi =0

= 8t§ + 6 X E =0

while for u = j,v =i, A = k we have

0 Fir, + 0i Fij + Ok Fji =0
9;B’ +9;B' +9,B" =0
=V-B=0

¢) Given the Energy-momentum tensor
v wpev Lo po
1%, = FYF™ + 19 Fyo F

compute the components 700 T |

Solution.
T, = FYF™ + igoo F,o 7

_ 1 i
= E* + 5 (FouF** + Fir ™)
1
5 (
_ E*4 B?
B 2

— B4 (—F 4 B

and for T2 we get

01 0 1 0% o
T :FpF” +Z g " FooF?

0

_ gO)\F)\pri _ gOOFOPFpi _ FOOFO'L + F01F1i + F02F2i + FOBFB'L

— B, FY + Eszi + B F%

which translates into

i=1:  —E.B,+ E,B.
i=2: —E,B.+E.B,
i=3:  —E,B.,+ E.B,

We then recognize the vector product,
i

T% = —(EX E)

Téﬁn in terms of the E and B fields.
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We can write the tensor as,

HE*+B%) S Sy S

Sz —Uzx —Uzx —Uzxz
T = 7 Tey =0 (S.36)
Sy “Oyz  —Oyy —Oyz
Sz —Ozx 7Uzy —O0zz
where
S=ExB (S.37)
is the Poyinting vector and
1
is the Maxwell stress tensor.
Notice that the metric we are using is g** = diag(+, —, —, —).

Show that the Levi-Civita tensor e#**? is invariant under proper Lorentz transformations.
Solution. We first calculate the Lorentz transformation for 123 e.g.
!
(50123) = AQALAZAP = det(A) = 1 = 12 (S.39)
Since €”?7 is totally antisymmetric it follows,
/
() = ALABALAGEPT = 0 = ek (S.40)

and the same for all the other cases in which two indeces are the same. In all the other cases we get —1
which proof that the Levi-civita tensor is Lorentz invariant, i.e.

euz/pa — AgAgAsAgeaﬁ’Yé (841)



