
Elektrodynamik

Solutions 9.
FS 2015

Prof. C. Anastasiou

Exercise 1. Relativistic particle in a constant, uniform magnetic field

Consider a point particle with mass m, charge q, initial velocity v0 and initial position x0, moving
in a constant, uniform magnetic field B = B êz, parallel to the z axis. Let the 4-momentum be
pµ = (Ec ,p).

1. Show that the energy of the particle is constant in time, e.g.

Ė = 0.

2. Find the trajectory of the particle.

3. What are the differences between the classical and the relativistic trajectory?

Solution.

1. In general, we can always write that

d

d t
(pµpµ) =

d

d t
(m2c4) = 0.

Therefore

0 = pµ
d

d t
pµ =

1

c2
E d
d t
E − p · d

d t
p.

Knowing that ṗ = F and that v = c2p
E , we get that

Ė = F · v.

Since the magnetic force is orthogonal to v, then Ė = 0.

2. The relativistic equations of motion
d

dt
p = F, (S.1)

in this case are just

ṗ = q v ×B,

with initial conditions

x(t = 0) = x0 = (x0, y0, z0), v(t = 0) = v0 = (v0,x, v0,y, v0,z).

The equations of motion can be recast as

dv

d t
=
c2

E q v ×B

since E is constant. In components, it becomes

d vx
d t

= ω vY ,
d vy
d t

= −ω vx,
d vz
d t

= 0,

where ω = qc2B
E .

The equation for the z direction has the simple solution

z(t) = z0 + v0,zt.

For the transverse directions, we can rewrite the equations as

d

d t
(vx + ivy) = −iω(vx + ivy),
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whose solution is

vx + ivy = a e−iω t. (S.2)

a is of course a = vo,x + ivo,y, but in order to get the trajectory, it’s better to rewrite it as

a = |a|e−iα,

where α = arctan
(
vy
vx

)
. Then, we can integrate eq. (S.2) and get

x(t) + iy(y) =
i |a|
ω

e−i(ωt+α) + q0, (S.3)

where q0 is a complex integration constant. Then, we can get x, y by taking Re, Im of the complex

solution:

x(t) =
|a|
ω

sin(ωt+ α) + Re(q0),

y(t) =
|a|
ω

cos(ωt+ α) + Im(q0),

where Re(q0) and Im(q0) are the algebraic solutions to the equations x(t = 0) = x0, y(t = 0) = y0.

It is thus evident that the trajectory is a spiral whose axis is parallel to the direction of the magnetic field.

3. The classical trajectory is also a spiral with axis parallel to B; however, the classical frequency is ωCl = q B
m

,

which is (of course) the nonrelativistic limit of our ω (recall ω = q B
γm

) .

Exercise 2. Lorentz transformations for the Electromagnetic field

a) Prove that under a general Lorentz transformation the ~E and ~B fields transform as follows:

~E′ = γ
(
~E + c ~β × ~B

)
− γ2

γ + 1
~β(~β · ~E), (1)

~B′ = γ
(
~B − c−1 ~β × ~E

)
− γ2

γ + 1
~β(~β · ~B), (2)

where ~β = ~v/c, γ = (1− β2)−1/2 and c is the speed of light.

Solution. We have

F ′µν = Λµρ Λνσ F
ρσ

where Λ is given by

In components:
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F 0i ′ = −Ei
′

= Λ0
ρ Λiσ F

ρσ

= Λ0
0 Λiσ F

0σ + Λ0
k Λiσ F

kσ

= Λ0
0 Λil F

0l + Λ0
k Λi0 F

k0 + Λ0
k Λil F

kl

= Λ0
0

(
δil + (γ − 1)

βiβl

β2

)
F 0l + Λi0 (−γ ~β · ~E) + Λil (−γ βk F kl)

= γ

(
F 0i + (γ − 1)

βi
β2

(−~β · ~E)

)
− γ βi (−γ ~β · ~E)

+

(
δil + (γ − 1)

βiβl
β2

)
(−γ βk F kl)

= −γ Ei +
γ3

γ + 1
βi(−~β · ~E) + γ2 βi ~β · ~E

+

(
−γ βk F ki − γ (γ − 1)

βi

β2
(βlβk F kl)

)
= −γ Ei +

γ2

γ + 1
βi ~β · ~E + γ βk εkilBl

= −γ Ei +
γ2

γ + 1
βi ~β · ~E − γ (~β × ~B)i

where we use

β2 =
γ2 − 1

γ2

and the antisymmetry of F kl. Then we have

~E′ = γ ~E − γ2

γ + 1
~β (~β · ~E) + γ (~β × ~B) (S.4)

For the B field

F ij
′

= −εijkBk
′

= Λiρ Λjσ F
ρσ

=
(

Λi0 Λjk − Λik Λj0

)
F 0k + Λik ΛjlF

kl

=

[
−γ βi

(
δjk + (γ − 1)

βjβk

β2

)
+ γ βj

(
δik + (γ − 1)

βiβk

β2

)]
F 0k

+

(
δik + (γ − 1)

βiβk

β2

)(
δjl + (γ − 1)

βjβl

β2

)
F kl

= −γ
[
βi F 0j − βj F 0i +

γ − 1

β2

(
βi βj βk − βi βk βj

)
F 0k

]
+ F ij +

γ − 1

β2

(
F il βj βl + F kj βi βk

)
+

(γ − 1)2

β4
βi βj (βk βl F kl)

= γ εijk(~β × ~E)k + F ij − γ − 1

β2
εijk

[
βk(−~β · ~B) + β2Bk

]
= γ εijk(~β × ~E)k + εijk

[
γ − 1

β2
βk(~β · ~B)− γ Bk

]

and hence

~B′ = γ( ~B − ~β × ~E)− γ2

γ + 1
~β(~β · ~B) (S.5)

b) Argue what happens to the angle between the ~E and ~B fields under a general boost
transformation.

Solution. Since
~B · ~E
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is Lorentz invariant, and the angle between the fields is given by

cos θ =
~B · ~E
| ~B| | ~E|

then θ in general will change, unless, the fields are orthogonal in the original frame.

Exercise 3. Electrodynamics in a Covariant formalism

a) Given the electromagnetic field tensor Fµν with components

F 0i = −Ei, F ij = −εijkBk, Fµν = −F νµ, (3)

with ε123 = +1, compute

− 1

4
Fµν Fµν , εµνρσ F

µν F ρσ (4)

in terms of the ~E and ~B fields.

Solution.

(a)

Fµν Fµν = F 0ν F0ν + F 1ν F1ν + F 2ν F2ν + F 3ν F3ν (S.6)

= F 00 F00︸ ︷︷ ︸
0

+
(
F 01 F01 + · · ·+ F 03 F03︸ ︷︷ ︸

−E2

)
+
(
F 10 F10 + · · ·+ F 30 F30︸ ︷︷ ︸

−E2

)
(S.7)

+
(
F 11 F11 + · · ·+ F 13 F13︸ ︷︷ ︸

B2
z+B

2
y

)
+
(
F 21 F21 + · · ·+ F 23 F23︸ ︷︷ ︸

B2
z+B

2
x

)
+
(
F 31 F31 + · · ·+ F 33 F33︸ ︷︷ ︸

B2
y+B

2
x

)
(S.8)

= −2E2 + 2B2 (S.9)

(b) Let us first define a new tensor, (
F̃
)
λσ

= εµνλσF
µν (S.10)

and calculate the components,(
F̃
)
01

= εµν 01F
µν = ε2301F

23 + ε3201F
32 = ε0123F

23 − ε0123F 32 (S.11)

= ε0123F
23 + ε0123F

23 = 2F 23 = −2Bx. (S.12)

Analogous we find for the others non vanishing components(
F̃
)
02

= −2By (S.13)(
F̃
)
03

= −2Bz (S.14)(
F̃
)
12

= −2Ez (S.15)(
F̃
)
13

= 2Ey (S.16)(
F̃
)
23

= −2Ex (S.17)

Computing now the full expression we get

εµνλσ F
µν Fλσ =

(
F̃
)
λσ
Fλσ = 8 ~B · ~E. (S.18)
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b) Show that all the Maxwell equations

∂t ~B + ~∇× ~E = 0 (5)

~∇ · ~B = 0 (6)

are equivalent to

∂µFνλ + ∂νFλµ + ∂λFµν = 0 (7)

Solution.

(a) For µ = 0, ν = i, λ = k we have

∂0Fik + ∂iFk0 + ∂kF0i = 0 (S.19)

− ∂0(εiklB
l)− ∂iEk + ∂kEi = 0 (S.20)

⇒ ∂t ~B + ~∇× ~E = 0 (S.21)

while for µ = j, ν = i, λ = k we have

∂jFik + ∂iFkj + ∂kFji = 0 (S.22)

∂jB
j + ∂iB

i + ∂kB
k = 0 (S.23)

⇒ ~∇ · ~B = 0 (S.24)

c) Given the Energy-momentum tensor

Tµνem = Fµρ F
ρν +

1

4
gµν FρσF

ρσ (8)

compute the components T 00
em, T

0i
em, T

ij
em in terms of the ~E and ~B fields.

Solution.

T 00
em = F 0

ρF
ρ0 +

1

4
g00 FρσF

ρσ (S.25)

= ~E2 +
1

4
(F0kF

0k + FikF
ik) (S.26)

= ~E2 +
1

2
(− ~E2 + ~B2) (S.27)

=
~E2 + ~B2

2
(S.28)

and for T 0i
em we get

T 0i = F 0
ρF

ρi +
1

4
g0i︸︷︷︸
0

FρσF
ρσ (S.29)

= g0λFλρF
ρi = g00F0ρF

ρi = F00F
0i + F01F

1i + F02F
2i + F03F

3i (S.30)

= ExF
1i + EyF

2i + EzF
3i (S.31)

which translates into

i = 1 : −EzBy + EyBz (S.32)

i = 2 : −ExBz + EzBx (S.33)

i = 3 : −EyBx + ExBy (S.34)

We then recognize the vector product,

T 0i = −
(
~B × ~E

)i
. (S.35)
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We can write the tensor as,

Tµν =


1
2
(E2 +B2) Sx Sy Sz

Sx −σxx −σxy −σxz
Sy −σyx −σyy −σyz
Sz −σzx −σzy −σzz

 (S.36)

where

~S = ~E × ~B (S.37)

is the Poyinting vector and

σij = EiEj +BiBj −
1

2
(E2 +B2)δij (S.38)

is the Maxwell stress tensor.

Notice that the metric we are using is gµν = diag(+,−,−,−).

d) Show that the Levi-Civita tensor εµνρσ is invariant under proper Lorentz transformations.

Solution. We first calculate the Lorentz transformation for ε0123, e.g.(
ε0123

)′
= Λ0

αΛ1
βΛ2

γΛ3
δε
αβγδ = det(Λ) = 1 = ε0123 (S.39)

Since εµνρσ is totally antisymmetric it follows,(
εµµνρ

)′
= ΛµαΛµβΛνγΛρδε

αβγδ = 0 = εµµνρ (S.40)

and the same for all the other cases in which two indeces are the same. In all the other cases we get −1

which proof that the Levi-civita tensor is Lorentz invariant, i.e.

εµνρσ = ΛµαΛνβΛργΛσδ ε
αβγδ (S.41)
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