Exercise 1. Relativistic particle in a constant, uniform magnetic field

Consider a point particle with mass m, charge q, initial velocity \mathbf{v}_0 and initial position \mathbf{x}_0 , moving in a constant, uniform magnetic field $\mathbf{B} = B \,\hat{\mathbf{e}}_z$, parallel to the z axis. Let the 4-momentum be $p^{\mu} = (\frac{\mathcal{E}}{c}, \mathbf{p})$.

1. Show that the energy of the particle is constant in time, e.g.

$$\dot{\mathcal{E}} = 0.$$

- 2. Find the trajectory of the particle.
- 3. What are the differences between the classical and the relativistic trajectory?

Exercise 2. Lorentz transformations for the Electromagnetic field

a) Prove that under a general Lorentz transformation the \vec{E} and \vec{B} fields transform as follows:

$$\vec{E}' = \gamma \left(\vec{E} + c \,\vec{\beta} \times \vec{B} \right) - \frac{\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{E}),\tag{1}$$

$$\vec{B}' = \gamma \left(\vec{B} - c^{-1} \, \vec{\beta} \times \vec{E} \right) - \frac{\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}), \tag{2}$$

where $\vec{\beta} = \vec{v}/c$, $\gamma = (1 - \beta^2)^{-1/2}$ and c is the speed of light.

b) Argue what happens to the angle between the \vec{E} and \vec{B} fields under a general boost transformation.

Exercise 3. Electrodynamics in a Covariant formalism

a) Given the electromagnetic field tensor $F^{\mu\nu}$ with components

$$F^{0i} = -E^i, \qquad F^{ij} = -\epsilon^{ijk}B_k, \qquad F^{\mu\nu} = -F^{\nu\mu},$$
(3)

with $\epsilon_{123} = +1$, compute

$$-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}, \qquad \epsilon_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma}$$
(4)

in terms of the \vec{E} and \vec{B} fields.

b) Show that all the Maxwell equations

$$\partial_t \vec{B} + \vec{\nabla} \times \vec{E} = 0 \tag{5}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \tag{6}$$

are equivalent to

$$\partial_{\mu}F_{\nu\lambda} + \partial_{\nu}F_{\lambda\mu} + \partial_{\lambda}F_{\mu\nu} = 0 \tag{7}$$

c) Given the Energy-momentum tensor

$$T_{em}^{\mu\nu} = F_{\rho}^{\mu}F^{\rho\nu} + \frac{1}{4}g^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}$$

$$\tag{8}$$

compute the components $T_{em}^{00}, T_{em}^{0i}, T_{em}^{ij}$ in terms of the \vec{E} and \vec{B} fields.

d) Show that the Levi-Civita tensor $\epsilon^{\mu\nu\rho\sigma}$ is invariant under Lorentz transformations.