Exercise 1. Spherical Hamonics

In this exercise we want to become more confident with the Spherical Harmonics.

1. Starting from

$$
\begin{align*}
Y_{l m}(\theta, \phi) & =\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos (\theta)) e^{i m \phi} \tag{1}\\
P_{l}^{m}(x) & =\frac{(-1)^{m}}{2^{l} l!}\left(1-x^{2}\right)^{m / 2} \frac{d^{l+m}}{d x^{l+m}}\left(x^{2}-1\right)^{l} \tag{2}
\end{align*}
$$

with $x=\cos (\theta)$, derive the expressions for

$$
\begin{equation*}
Y_{00}, Y_{1, m}, Y_{2, m}, \quad m \in[-l, l] \tag{3}
\end{equation*}
$$

2. Draw the following functions

$$
\left|Y_{00}\right|^{2},\left|Y_{1, m}\right|^{2},\left|Y_{2, m}\right|^{2}
$$

for $m \in[-l, l]$ in a 3 D plot (using for example Mathematica).
3. Verify the orthogonality conditions explicitly for the previous functions.

Notice that $Y_{l, m}(\theta, \phi)$ with m odd (even) are always odd (even) in θ.

Exercise 2. Spherical cavity and spherical functions

Consider a sphere of radius a where the surface of the upper hemisphere has a potential $+\Phi_{0}$ and the surface of the lower hemisphere has a potential $-\Phi_{0}$, that is:

$$
\Phi_{0}\left(\theta^{\prime}, \phi^{\prime}\right)= \begin{cases}+\Phi_{0} & \text { for } \theta^{\prime} \in\left[0, \frac{\pi}{2}\right] \tag{4}\\ -\Phi_{0} & \text { for } \theta^{\prime} \in\left(\frac{\pi}{2}, \pi\right] .\end{cases}
$$

As you know from the lecture (method of image), in this case the Green Function is given by

$$
\begin{equation*}
G\left(\vec{r}, \vec{r}^{\prime}\right)=\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}-\frac{a}{r^{\prime}\left|\vec{r}-\frac{a^{2}}{r^{\prime} 2} \vec{r}^{\prime}\right|} \tag{5}
\end{equation*}
$$

where \vec{r}^{\prime} refers to a unit source outside the sphere and \vec{r} to the point where the potential is evaluated.

1. Using the expansion

$$
\begin{equation*}
\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{l m}(\theta, \phi) \tag{6}
\end{equation*}
$$

where $r_{<}\left(r_{>}\right)$is the smaller (larger) of $|\vec{r}|$ and $\left|\vec{r}^{\prime}\right|$, show that the Green Function (5) can be written as

$$
\begin{equation*}
G\left(\vec{r}, \vec{r}^{\prime}\right)=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2 l+1}\left[\frac{r_{<}^{l}}{r_{>}^{l+1}}-\frac{1}{a}\left(\frac{a^{2}}{r r^{\prime}}\right)^{l+1}\right] Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{l m}(\theta, \phi) \tag{7}
\end{equation*}
$$

2. Using Dirichlet boundary conditions, show that the potential outside the sphere has following the expansion

$$
\begin{equation*}
\Phi(r, \theta, \phi)=\sum_{l, m}\left(\frac{a}{r}\right)^{l+1} Y_{l m}(\theta, \phi) \int \Phi_{0}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) d \Omega^{\prime} \tag{8}
\end{equation*}
$$

which tends to 0 as $r \rightarrow \infty$.
3. Now calculate the potential outside the sphere using (8) up to the terms of order a^{4}.

Hint. Notice that only terms with odd l will survive in the expansions (8) for the potential given by (4).

Exercise 3. Surface charge density

As in the previous exercise, consider a spherical shell of radius R. The sphere has a charge density $\sigma(\theta)$ such that the surface potential has the following form

$$
\begin{equation*}
\Phi(R, \theta)=V_{0}+V_{1} \cos \theta+V_{2} \cos 2 \theta \tag{9}
\end{equation*}
$$

where V_{0}, V_{1}, V_{2} are constants and θ is the polar angle.

1. Find the potential $\Phi(r, \theta)$ both inside and outside the spherical shell. Can be useful, in this case, to rewrite the potential in a unique form as

$$
\begin{equation*}
\Phi(r, \theta)=\sum_{l=0}^{\infty}\left(a_{l} r^{l}+b_{l} r^{-(l+1)}\right) P_{l}(\cos \theta) \tag{10}
\end{equation*}
$$

where P_{l} are the Legendre polynomials.
Hint. Use that $\Phi \rightarrow 0$ for $r \rightarrow \infty$ and the orthogonality of the Legendre polynomials.
2. Calculate the electric field $E(r, \theta)$.
3. Find the surface charge density $\sigma(\theta)$.

Hint. Use the fact that the component of the electric field orthogonal to the spherical surface undergoes a jump at $r=R$.

Exercise 4. Conductors and capacities

In this problem we introduce and analyze the concept of capacity constants for arrays of conductors. Inside a conductor the electric field \mathbf{E} vanishes and the electric potential is constant for static (i.e. equilibrium) situations. We consider finitely many perfect conductors described by spatially separated sets A_{1}, \ldots, A_{r} for some $r \in \mathbb{N}$. Assume that they are carrying total charges Q_{1}, \ldots, Q_{r} and that there exists a (unique) equilibrium charge density ρ (which of course vanishes outside the conductors).

1. The potential $V_{i}=V_{i}\left(\left\{Q_{k}\right\}\right)$ is the potential of the $i-$ th conductor. Show that

$$
\begin{equation*}
V_{i}\left(\left\{\lambda Q_{k}\right\}\right)=\lambda V_{i}\left(\left\{Q_{k}\right\}\right) \tag{11}
\end{equation*}
$$

for any $\lambda \in \mathbb{R}$, using the explicit integral expression for a potential generated by a given charge distribution.
2. Using Eq. 11 show that $V_{i}=V_{i}\left(\left\{Q_{k}\right\}\right)$ depends linearly on Q_{1}, \ldots, Q_{r}, i.e.

$$
\begin{equation*}
V_{i}\left(\left\{Q_{k}\right\}\right)=\sum_{j=1}^{r} D_{i j} Q_{j} \tag{12}
\end{equation*}
$$

where $D_{i k}:=\frac{\partial V_{i}}{\partial Q_{k}}$ depends only on $\left\{A_{k}\right\}$.

It turns out that $D=\left(D_{i k}\right)$ is regular. We define $C=\left(C_{i k}\right):=D^{-1}$. Its components $C_{i k}$ are called capacity constants and depend only on the geometry $\left\{A_{k}\right\}$.
3. Show that the total energy W of the equilibrium charge distribution $\rho \equiv \rho\left(\left\{Q_{k}\right\},\left\{A_{k}\right\}\right)$ in the situation of the previous problem can be expressed as

$$
\begin{equation*}
W=\frac{1}{2} \sum_{i, j=1}^{r} C_{i j} V_{i} V_{j} \tag{13}
\end{equation*}
$$

