Exercise 1. Spherical Hamonics

In this exercise we want to become more confident with the Spherical Harmonics.

1. Starting from

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos(\theta)) e^{im\phi}$$
(1)

$$P_l^m(x) = \frac{(-1)^m}{2^l l!} (1 - x^2)^{m/2} \frac{d^{l+m}}{dx^{l+m}} (x^2 - 1)^l$$
(2)

with $x = \cos(\theta)$, derive the expressions for

$$Y_{00}, Y_{1,m}, Y_{2,m}, \qquad m \in [-l, l]$$
 (3)

2. Draw the following functions

$$|Y_{00}|^2, |Y_{1,m}|^2, |Y_{2,m}|^2$$

for $m \in [-l, l]$ in a 3D plot (using for example Mathematica).

3. Verify the orthogonality conditions explicitly for the previous functions. Notice that $Y_{l,m}(\theta, \phi)$ with m odd (even) are always odd (even) in θ .

Exercise 2. Spherical cavity and spherical functions

Consider a sphere of radius *a* where the surface of the upper hemisphere has a potential $+\Phi_0$ and the surface of the lower hemisphere has a potential $-\Phi_0$, that is:

$$\Phi_0(\theta',\phi') = \begin{cases} +\Phi_0 & \text{for } \theta' \in [0,\frac{\pi}{2}] \\ -\Phi_0 & \text{for } \theta' \in (\frac{\pi}{2},\pi]. \end{cases}$$
(4)

As you know from the lecture (method of image), in this case the Green Function is given by

$$G(\vec{r}, \vec{r}') = \frac{1}{|\vec{r} - \vec{r}'|} - \frac{a}{r' \left| \vec{r} - \frac{a^2}{r'^2} \vec{r}' \right|}$$
(5)

where \vec{r}' refers to a unit source outside the sphere and \vec{r} to the point where the potential is evaluated.

1. Using the expansion

$$\frac{1}{|\vec{r} - \vec{r}'|} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{lm}^{*}(\theta', \phi') Y_{lm}(\theta, \phi)$$
(6)

where $r_{\leq}(r_{\geq})$ is the smaller (larger) of $|\vec{r}|$ and $|\vec{r}'|$, show that the Green Function (5) can be written as

$$G(\vec{r}, \vec{r}') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \left[\frac{r_{<}^{l}}{r_{>}^{l+1}} - \frac{1}{a} \left(\frac{a^{2}}{rr'} \right)^{l+1} \right] Y_{lm}^{*}(\theta', \phi') Y_{lm}(\theta, \phi)$$
(7)

2. Using Dirichlet boundary conditions, show that the potential outside the sphere has following the expansion

$$\Phi(r,\theta,\phi) = \sum_{l,m} \left(\frac{a}{r}\right)^{l+1} Y_{lm}(\theta,\phi) \int \Phi_0(\theta',\phi') Y_{lm}^*(\theta',\phi') d\Omega'.$$
(8)

which tends to 0 as $r \to \infty$.

Now calculate the potential outside the sphere using (8) up to the terms of order a⁴.
 Hint. Notice that only terms with odd l will survive in the expansions (8) for the potential given by (4).

Exercise 3. Surface charge density

As in the previous exercise, consider a spherical shell of radius R. The sphere has a charge density $\sigma(\theta)$ such that the surface potential has the following form

$$\Phi(R,\theta) = V_0 + V_1 \cos \theta + V_2 \cos 2\theta, \tag{9}$$

where V_0 , V_1 , V_2 are constants and θ is the polar angle.

1. Find the potential $\Phi(r, \theta)$ both inside and outside the spherical shell. Can be useful, in this case, to rewrite the potential in a unique form as

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} \left(a_l r^l + b_l r^{-(l+1)} \right) P_l(\cos\theta), \tag{10}$$

where P_l are the Legendre polynomials.

Hint. Use that $\Phi \to 0$ for $r \to \infty$ and the orthogonality of the Legendre polynomials.

- 2. Calculate the electric field $E(r, \theta)$.
- 3. Find the surface charge density $\sigma(\theta)$.

Hint. Use the fact that the component of the electric field orthogonal to the spherical surface undergoes a jump at r = R.

Exercise 4. Conductors and capacities

In this problem we introduce and analyze the concept of capacity constants for arrays of conductors. Inside a conductor the electric field **E** vanishes and the electric potential is constant for static (i.e. equilibrium) situations. We consider finitely many perfect conductors described by spatially separated sets A_1, \ldots, A_r for some $r \in \mathbb{N}$. Assume that they are carrying total charges Q_1, \ldots, Q_r and that there exists a (unique) equilibrium charge density ρ (which of course vanishes outside the conductors). 1. The potential $V_i = V_i(\{Q_k\})$ is the potential of the *i*-th conductor. Show that

$$V_i(\{\lambda Q_k\}) = \lambda V_i(\{Q_k\}) \tag{11}$$

for any $\lambda \in \mathbb{R}$, using the explicit integral expression for a potential generated by a given charge distribution.

2. Using Eq. 11 show that $V_i = V_i(\{Q_k\})$ depends linearly on Q_1, \ldots, Q_r , i.e.

$$V_i(\{Q_k\}) = \sum_{j=1}^r D_{ij} Q_j,$$
(12)

where $D_{ik} := \frac{\partial V_i}{\partial Q_k}$ depends only on $\{A_k\}$.

It turns out that $D = (D_{ik})$ is regular. We define $C = (C_{ik}) := D^{-1}$. Its components C_{ik} are called capacity constants and depend only on the geometry $\{A_k\}$.

3. Show that the total energy W of the equilibrium charge distribution $\rho \equiv \rho(\{Q_k\}, \{A_k\})$ in the situation of the previous problem can be expressed as

$$W = \frac{1}{2} \sum_{i,j=1}^{r} C_{ij} V_i V_j.$$
(13)