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Exercise 1. Vector Identities.

In Electrodynamics we frequently use standard vector identities. To practice with Einstein
summation convention prove the following identities:

1. a× (b× c) = (a · c)b− (a · b) c

2. (a× b) · (c× d) = (a · c) (b · d)− (a · d) (b · c)

3. Ra×Rb = R (a× b)

4. ∇×∇ψ = 0

5. ∇ · (∇×A) = 0

6. ∇× (∇×A) = ∇ (∇ ·A)−∆A

7. ∇ (A ·B) = (A · ∇)B+ (B · ∇)A+A× (∇×B) +B× (∇×A)

where a, b, c and d are vectors, A, B are vectorfields, ψ is a function and R ∈ SO(3). Moreover
assume that all components Ai, Bj and also ψ are in C(2), i.e. two times continuously differen-
tiable.
Don’t write out cross products explicitly, but use the index notation involving the Levi-Civita
symbol εijk.

Exercise 2. Gauss and Stokes theorems.

1. Consider the vector field in R3 (in Cartesian coordinates)

V(x, y, z) = (x y, z2 y2, z2 + y), (1)

and a parallelepiped domain

D = {(x, y, z) ∈ R3 | 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz, }. (2)

Check the validity of the divergence theorem, by proving that∫
D
d3x∇ ·V =

∫
∂D

V · dÂ, (3)

where ∂D is the border surface of the parallelepiped D in figure.
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Note: Given a surface A, parametrized as A = {Ax(s, t), Ay(s, t), Az(s, t)}, the surface

vector dÂ is defined as

dÂ =
∂A

∂s
× ∂A

∂t
. (4)

When parametrizing the parallelepiped, pay attention to the orientation of the surfaces.

2. Consider the vector field

V(x, y, z) =
(
0, 6xz + 9y2, 12yz2

)
.

Check that V fulfills Stokes’ theorem for the area/path defined in the figure, i.e. calculate
both sides of the equation ∮

V · dl =
∫

(∇×V) · dÂ . (5)
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Exercise 3. Electric field from a charged line.

1. Consider an infinite line with constant charge density λ = q/L.

(a) Using Gauss law, find the value of the electric field E⃗ generated by the line.

(b) Compute E⃗ again, now using Coulomb’s law.

Hint. Find first the components of the electric field parallel (E∥) and perpendicular (E⊥) to

the line, as described in the picture.

2. Consider now a charged line of length L.

(a) Compute the two components E∥ and E⊥ of the electric field.

Hint. Introduce a parameter x0 related to a shift from the middle of the line. Be careful with

the integration limits!

(b) Take the limit for L→ ∞. You should recover the same values as in (1b).

3. Explore the limit L/2 ≪ (x0, R). In this case the observation point is very far and we
expect to recover the 1/r2 behavior of a point-like charge.

Is it enough to expand up to first order, or do you need one more?

Hint. Notice that now x0 is not part of the line anymore, but is somewhere very far from it.

Therefore the definition of the two angles θa and θb needs to be changed. Also, in order to compare

the result with your expectation, write it in terms of radial and tangential components with respect

to a spherical surface.
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