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Exercise 1. The Klein-Gordon and Dirac Equations

Goal: The Klein-Gordon and Dirac equations are based on the relativistic energy-
momentum relation, E2 = p2c2 + m2c4. We’ll understand how the Dirac equation is
related to the Klein-Gordon equation, and see how we obtain negative energy solutions,
which one interprets as antiparticles.

(a) Using the correspondance principle E → i~∂t and ~p → −i~∇ in the same way as for the
non-relativistic Schrödinger equation, derive the Klein-Gordon equation using the rela-
tivistic energy-momentum relation E2 = p2c2 +m2c4:(
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c2
∂2

∂t2
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m2c2

~2

)
φ (~x, t) = 0 . (1)

In natural units (c = 1, ~ = 1), which we will use for the rest of the exercise sheet, the
equation simply becomes

(
� +m2

)
φ = 0, with � = ∂µ∂

µ. We’ll use the convention gµν =
diag (+,−,−,−) for the metric.

If one starts from the square root relativistic energy-momentum relation E =
√
p2c2 +m2c4

instead, one arrives to the Dirac equation

(iγµ∂µ −m)ψ (~x, t) = 0 , (2)

where γµ are a set of matrices obeying {γµ, γν} = 2gµν .

(b) Show that if ψ satisfies the Dirac equation, then each of its components individually
satisfies the Klein-Gordon equation:(

� +m2
)
ψα = 0 . (3)

Hint: Apply γν∂ν onto (2).

(c) Show that, with the Dirac-Pauli representation of the γµ matrices and going to momentum
space, the Dirac equation (2) becomes(

m ~σ · ~p
~σ · ~p −m

)(
uA
uB

)
= E

(
uA
uB

)
, (4)

where uA and uB are two-component spinors.

(d) Show that u (~p, s) and v (−~p,−s) as defined in (25.39) in the lecture notes are solutions
of (4). Which values of E are allowed?
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Exercise 2. The Need for Antiparticles

Goal: We’ll see here how, in order to unify quantum mechanics with special relativity,
we necessarily have to introduce the concept of antiparticles, along with pair creation
and annihilation.

Consider a free particle which is in the state |~x1〉 at time t1. The amplitude to find this particle
at time t2 at a position ~x2 is given by

A~x1→~x2 = 〈~x2 |U(t2 − t1)|~x1〉 , (5)

where U (t2 − t1) = exp (−iH0(t2 − t1)) is the unitary time evolution corresponding to a free
particle with the relativistic dispersion relation ωp =

√
p2 +m2.

(a) Assuming that the particle may only have positive energies ωp =
√
p2 +m2, show that the

amplitude (5) cannot vanish completely in any finite region of space-time. In particular,
there is a nonzero transition amplitude for points (~x2, t2) which lie outside of the light
cone of (~x1, t1).

Hints: Write out the amplitude A~x1→~x2 using an integration over
∫ d3~p

(2π)3
in order to ex-

press U (t2 − t1), and go to spherical coordinates. Eventually, you may invoke the following
theorem from Fourier analysis: if a function f(t) can be written as a superposition of only
positive frequencies, i.e. f(t) =

∫∞
0 dω F (ω) e−iωt, then f (t) cannot be zero for any finite

range of t, unless f is zero everywhere.

Consider now a particle in an initial state |φ0〉. If we want to compute
the amplitude to find this particle at a later time again in the same
state |φ0〉, under some perturbation V , we may resort to a perturba-
tive expansion of the evolution unitary (cf. time-dependent perturba-
tion theory). The leading order corresponds to nothing happening:
〈φ0 |φ0〉 = 1. The next nonzero term corresponds to a disturbance
〈x1 |V |φ0〉 happening at (~x1, t1), producing a intermediate particle of
momentum ~p, followed by another disturbance 〈φ0 |V |x2〉 at (~x2, t2)
which brings the particle back into the state |φ0〉. The diagram corre-
sponding to these events is shown on the right (time runs upwards).

(b) Suppose (~x2, t2) lies outside of the light cone of (~x1, t1). As we have seen in point (a), the
amplitude corresponding to this situation is typically nonzero (which might let us wonder
whether we still have causality). Draw the diagram corresponding to an observer which is
boosted such that t′2 happens before t′1. How does the intermediate particle look like for
the boosted observer?

Explain why this intermediate particle should be interpreted as an antiparticle, and de-
scribe the sequence of events as the boosted observer would see them.

How is the energy, momentum, and charge of the antiparticle observed by the moving
observer related to the energy, momentum and charge of the intermediate particle described
by the stationary observer?
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