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Abstract

Particles and their interactions are described by quantum field theories. Famous exam-
ples are QED, QCD and the Standard Model. All of these models are gauge theories,
i.e. QFTs with local symmetries. In this proseminar, we will discuss fundamental as-
pects of gauge theories, e.g. Lie groups, quantisation and renormalisation. We will
then discuss a supersymmetric theory with many exciting features.

Organisation

Criteria for passing the module:

• Give a pedagogical presentation demonstrating solid understanding of the material.
• Be present at least 80% of the time.
• Hand in a written report of your talk (around 10 pages, in English, as PDF file).

Each presentation should last around 60 minutes, but not more. It is followed by a
general discussion. You are encouraged give a computer presentation.

Each student is assigned to a research assistant at the institute as a tutor for their talk.
You should contact your tutor at least six weeks before your talk to discuss logistics.
You should keep your tutor updated of your work at least once a week.

One week before your talk you are expected to have a draft of your report as well as a
finished set of slides which you have to present to your tutor. The report can be handed
in up to one week after the talk.

Below you can find a list of all the talks. For each talk there is a brief description of the
topic, a list of suggested items to be covered as well as some useful references; for
more specific guidance and further references, please ask your tutor.

The talks will be presented on Monday mornings, usually 9:00–12:45 in HIT F 32
according to the below schedule.

Hints

General remarks for designing your talk:

• Try to give a consistent and interesting presentation of the subject. Sometimes less
is more: It is important to get the general message across. You do not need to
present all the details and every step of each calculation. Nevertheless you should
be prepared to provide further details when asked.
• The list of aims and literature is neither complete nor should you consider all the

items as mandatory. Please discuss with your tutor what is a good selection of
topics, and what can be left out safely (also with regard to the following talks).

1



• Think about what the audience will be familiar with and what not. Which points do
you have to present in detail? Which ones should you rather just sketch out?

You are also encouraged to coordinate your talk with your neighbours where appropri-
ate:

• Avoid excessive overlap between the talks;
• make references to other talks.
• Do not take away your successor’s key points;
• rather prepare the audience for the topics to follow.

Regarding your computer presentation:

• Please bring your own laptop, test it at least 10 minutes before the talk.
• Please do not overload the slides. An even balance between formulae and text

usually fits this subject well. Figures are especially helpful to get your message
across.
• Be careful about colours, e.g. do not use light colours on a white background. A

common mistake is to use plain green which looks fine on a computer screen but is
illegible on a projector! Use a darker shade instead, e.g. 60% green.
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A Yang–Mills Theory

The following talks provide the basics of classical and quantum non-abelian gauge
theory, also known as Yang–Mills theory.

A1 Lie Groups

Date: 16 Mar, 9:00 Student: Oliver Rietmann Tutor: Dr. Juan Jottar

Description: Yang–Mills theory is a model making heavy use of Lie groups, algebras
and their representations. This talk shall give an overview of Lie groups concepts
relevant to Yang–Mills theory.

Goals: Lie groups, algebras and representations, structure constants fabc; use unitary
group U(N) as main example, mention others: SO(N), Sp(N), exceptional cases; spe-
cific representations: fundamental, adjoint, (anti)-symmetric products, Young tableaux;
Casimir invariant, higher Casimirs, Cf , CA; exponential map; weights and roots: Cartan
subalgebra, canonical basis of the algebra, Cartan matrix, simple roots, fundamental
weights, weight diagrams (use su(2) and su(3) as main examples)

References: [1, 2, 3] [4, §15.4] [5, §3.1, 3.2, 3.3 ] [6]

A2 Classical Yang–Mills Theory

Date: 16 Mar, 10:15 Student: Tobias Enders Tutor: Dr. Juan Jottar

Description: We start by defining classical Yang–Mills theory as a gauge theory, and
discuss its relevance for particle physics and the Standard Model in particular.

Goals: Electromagnetism, U(1) gauge symmetry; non-abelian gauge symmetry, co-
variant derivatives, field strength; Yang–Mills action; matrix-valued fields vs. basis in
gauge algebra; coupling of scalars and fermions; relevance of Yang–Mills theories to
particle physics.

References: [4, §15.2] [7, §12-1] [8, §6.1, 6.2, 6.3] [9, §69,88,89]

A3 Quantum Field Theory

Date: 16 Mar, 11:30 Student: Lukas Zobernig Tutor: Dr. Juan Jottar

Description: Quantisation of Yang–Mills theory relies on the framework of quantum
field theory. This talk outlines QFT using the path integral approach.

Goals: action, path integral; momentum space version of action, kinetic terms, propa-
gators, interaction terms; derivation of Feynman rules, use massive φ4 theory as main
example;

References: [10, 11] (conceptual), [4, 9], [8, §3.1, 3.2, 3.3, 4.1] (technical), [12] (con-
cise)
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A4 Regularisation and Renormalisation

Date: 23 Mar, 9:00 Student: Hynek Paul Tutor: Dr. Marco Baggio

Description: Most QFT’s are plagued by divergences from loops in Feynman graphs,
In sensible QFT’s one can absorb the divergences into a proper choice of (infinite/
running) coupling constants. This talk is to introduce the concept of regularisation and
regularisation.

Goals: loops, UV divergences; regularisation, dimensional regularisation and others
(cut-off, point-splitting); renormalisation and couterterms, effective action; beta func-
tions, running coupling, field renormalisation; use massive φ4 theory as main example;

References: [4, §16.5] [8, §4.2, 4.3, 4.5]

A5 Gauge Fixing

Date: 23 Mar, 10:15 Student: Janik Andrejkovic Tutor: Dr. Marco Baggio

Description: Gauge theories by definition have a local redundancies, therefore the
gauge field propagator cannot be uniquely defined. This talks describes breaking of
gauge symmetry to obtain well-defined propagators without ruining the properties of
the QFT.

Goals: discuss various gauge fixings, axial, Coulomb, Feynman/Landau; Faddeev–
Popov ghosts, ghost loops, one-loop gauge propagator with/without ghosts; BRST
transformations; Coulomb gauge and Gribov copies;

References: [4, §16.1, 16.2, 16.4] [8, §7.2, 7.3] [13, §9.4, 9.5, 12.3] [14, §3.5, 3.6]

A6 Yang–Mills Quantisation

Date: 23 Mar, 11:30 Student: Lorenz Eberhardt Tutor: Dr. Marco Baggio

Description: We now apply the QFT framework to Yang–Mills theory and derive the
Feynman diagrams.

Goals: use Faddeev–Popov gauge fixed action, details about gauge fixing in next talk,
propagators; Feynman rules, with renormalisable matter; background field quantisa-
tion; Ward identities;

References: [4, §16.1, 16.2, 16.6] [8, §8.1, 8.2, 8.3] [7, §12-2]
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B Applications

We are now in a position to discuss several interesting applications of quantum Yang–
Mills theory.

B1 Asymptotic Freedom and Confinement

Date: 30 Mar, 9:00 Student: Djordje Pantic Tutor: Dr. Yang Zhang

Description: Gauge theories may or may not have the property of asymptotic freedom
which makes them reasonable physical models at sufficiently high energies. A related
effect at low energies is confinement.

Goals: beta functions, dependence on gauge group and matter context; Landau poles,
asymptotic freedom; asymptotic freedom in the standard model; infrared slavery, con-
finement; quark potential, Wilson loops, area law, lattice gauge theory;

References: [4, §16.5, 16.6, 16.7] [7, §12-3] [8, §8.6, 8.8] [13, §15] [15, §34.1, 34.3]
[4, §15.3]

B2 Higgs Mechanism

Date: 30 Mar, 10:15 Student: Steffen Arnold Tutor: Dr. Yang Zhang

Description: The Higgs mechanism is a method to assign masses to interacting vector
particles without violating renormalisability or other basic principles of QFT. It involves
spontaneous breaking of gauge symmetry.

Goals: motivation W and Z bosons; spontaneous symmetry breaking in φ4, tachyon
and alternative vacuum; Goldstone boson; coupling to YM in U(N) |φ|4, eating of Gold-
stones, massive vector field; counting of on-shell modes before/after symmetry break-
ing;

References: [4, §20.1] [7, §12-5] [13, §10.2]

B3 Grand Unification

Date: 30 Mar, 11:30 Student: Tobias Wolf Tutor: Dr. Yang Zhang

Description: A dream of theoretical particle physics is to unite all fundamental forces
into one. There are convincing hints towards a grand unified theory (excluding gravity)
with gauge group SU(5) or SO(10). Unfortunately, the simplest implementations suffer
from protons decaying too fast.

Goals: chiral fermion charges; SU(5) unification, SU(5) → SU(3) × SU(2) × U(1)
breaking; anomalies; higgs couplings; right-handed neutrinos, SO(10) unification; pro-
ton decay, Weinberg angle;

References: [13, §18] [1, §18, 24] [4, §22.2]
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B4 Supersymmetric Yang–Mills Theory

Date: 13 Apr, 9:00 Student: Andrea Dei Tutor: Dr. Angnis Schmidt-May

Description: Supersymmetry is a symmetry which relates bosons and fermions, and
thus forces and matter. Supersymmetry requires specially arranged matter content
and particle interactions. The resulting cancellations between bosonic and fermionic
modes makes supersymmetric models exceptionally stable and gives them interesting
properties.

Goals: Coleman–Mandula theorem, (non-extended) supersymmetry algebra; Wess–
Zumino model, super Yang–Mills, supersymmetry transformations; divergences in su-
persymmetric theories, stability; avoid superspace;

References: [8, §1.8] [13, §20.1, 20.2, 20.5] [4, §22.4] [16, 17]
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C AdS/CFT Correspondence

The AdS/CFT correspondence is a remarkable exact duality between gauge theories
and string theories. It can be used to predict strong-coupling behaviour of particular
gauge theories. In the following talks we shall introduce the best-known duality be-
tween N = 4 supersymmetric Yang–Mills theory and IIB superstring theory on the
AdS5 × S5 background.

C1 Planar Limit

Date: 13 Apr, 10:15 Student: Cyril Welschen Tutor: Dr. Angnis Schmidt-May

Description: Yang–Mills theories with U(N) gauge group for sufficiently large N have
some resemblance to string theories: ’t Hooft observed that the expansion in 1/N is
an expansion in terms of genus of 2D surfaces, analogous to strings in perturbation
theory.

Goals: Feynman rules of U(N) Yang–Mills theories, traces of products of generator
T a; double line notation, fat Feynman graphs; Feynman graphs on Riemann surfaces,
Euler characteristic, ’t Hooft coupling λ and 1/N dependence; planar limit, strict large-
N limit; string theory qualitatively, worldsheet, relation to string perturbation theory;
simplifications at large N , radius of convergence in λ, non-perturbative contributions
exp(−1/g2YM);

References: [18, §1, 2, 3] [19, §8] [20, §3]

C2 N = 4 Supersymmetric Yang–Mills Theory

Date: 20 Apr, 9:00 Student: Oliver Baldacchino Tutor: Dr. Cheng Peng

Description: This talk introduces the 4D Yang–Mills theory with the maximum amount
of supersymmetry. The large amount of supersymmetry puts tight constraints on the
model which make it essentially unique. This model turns out to have a host of remark-
able features that are all but obvious at first sight.

Goals: fields and action for N = 4 SYM; uniqueness of the model, coupling con-
stants; dimensional reductions from 10D; extended supersymmetry transformations;
(super)conformal symmetry, beta function, why finiteness; special properties: finite-
ness, exact conformal symmetry, Montonen-Olive electromagnetic duality, integrability;

References: [21] [22, §1.1] [23]
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C3 AdS/CFT Correspondence

Date: 20 Apr, 10:15 Student: Marc Solar Tutor: Dr. Cheng Peng

Description: This talk introduces anti-de Sitter spaces and string theory on the AdS5×
S5 background. The holographic duality to N = 4 SYM on the boundary of AdS5 is
explained.

Goals: Green–Schwarz string theory on AdS5 × S5, coset space sigma model, action,
coupling constants; geometry of AdS, boundary, isometries, holography; formal state-
ment; matching of coupling constants, matching of observables, e.g. Wilson loops vs.
strings ending on the boundary; strong-weak problem;

References: [24, §12.3] [25] [26, 23, 27, 28, 29, 30]

C4 Conformal Field Theory

Date: 20 Apr, 11:30 Student: Ioannis Lavdas Tutor: Dr. Cheng Peng

Description: N = 4 SYM is a 4D conformal field theory. This talk is to introduce the
objects of interest in a CFT: local operators and their correlation functions.

Goals: conformal symmetry, local gauge-invariant operators, two-point functions, po-
sition space representation for field propagators; scaling dimensions, classical dimen-
sions, anomalous dimensions; three-point functions, OPE; AdS/CFT dictionary for local
operators;

References: [23] [31] [32, §3]

C5 Dilatation Operator

Date: 4 May, 9:00 Student: Dominic Beck Tutor: Dr. Martin Sprenger

Description: Scaling dimensions receive quantum corrections which can be computed
in perturbation theory. Alternatively they can be measured as the eigenvalues of the
dilatation generator of the conformal algebra. This talk presents the determination of
the one-loop dilatation generator of N = 4 SYM, which remarkably can be described
by a spin chain model.

Goals: sketch of anomalous dimension computation: contributing diagrams, operator
renormalisation, logarithmic behaviour and anomalous dimensions; local operators in
the SU(2) sector, computation of the dilatation operator; planar and non-planar contri-
butions; construction of the dilatation generator.

References: [22, §2.1.1] [33] [34] [35] [36, §3.1]
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D Integrable Spin Chains

This part of the proseminar deals with an elementary model of magnetism and its
solution. Excitingly, it appears in the spectral problem of a gauge theory.

D1 Heisenberg Spin Chain

Date: 4 May, 10:15 Student: Beatrix Mühlmann Tutor: Dr. Martin Sprenger

Description: The Heisenberg (XXX) spin chain, a classic model of quantum mechan-
ics and magnetism, makes an appearance in the dilatation generator of N = 4 SYM.
This talk is to define this model and its spectral problem. A remarkable property of the
model is its integrability which leads to the solution presented in the subsequent talks.

Goals: Heisenberg’s spin chain model, Hamiltonian, spectral problem; ferromagnetic
and antiferromagnetic vacuum; some simple example for the Hamiltonian operator, its
matrix representation and diagonalisation on a short spin chain (no Bethe ansatz);
integrability, higher conserved Hamiltonians, potentially: R/Lax-matrix, Yang–Baxter-
equation;

References: [37] [38] [39, §2, 3] [40, §3] [41, §3.1]

D2 Coordinate Bethe Ansatz

Date: 4 May, 11:30 Student: Philipp Zimmermann Tutor: Dr. Martin Sprenger

Description: The Heisenberg spin chain has an exact solution in terms of a simple set
of algebraic equations, the so-called Bethe equations. In this talk these equations are
derived by the coordinate Bethe ansatz that turns the model into a scattering problem
of magnons.

Goals: Coordinate Bethe ansatz; vacuum, vacuum energy; one-magnon state, disper-
sion relation; two-magnon state, scattering phase; many-magnon states, Bethe equa-
tions; simple solution of the Bethe equations, comparison to corresponding Hamilto-
nian eigenvalue.

References: [37] [38] [41, §3.2] [42, §2]
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D3 Algebraic Bethe Ansatz

Date: 11 May, 9:00 Student: Simon Storz Tutor: Dr. Joseph Renes

Description: A key object for the solution of integrable spin chains is the R-matrix
which obeys the Yang–Baxter equation. The R-matrix can be applied to the construc-
tion of energy eigenstates. This talk describes how to derive the Bethe equations using
the algebra of monodromy matrix elements.

Goals: Lax/R-matrix, Yang-Baxter-equation; transfer matrix and conserved charges;
monodromy matrix; elements A,B,C,D, algebraic relations; vacuum, creation and an-
nihilation operators; diagonal elements, undesirable terms, algebraic derivation of the
Bethe equations.

References: [40, §3, 4] [39, §3, 4, 5] [43] [22, §4.1] [44, §2.2, 2.3] [42, §3] [41, §4.2]
[45]

D4 More General Chains

Date: 11 May, 10:15 Student: — Tutor: Prof. Niklas Beisert

Description: The Heisenberg chain is a particular example of integrable spin chains.
There are many modifications that can be applied to this model which preserve the fea-
ture of integrability. This talk describes generalisations and their corresponding Bethe
equations which point at the underlying algebra.

Goals: q-deformations (XXZ), XYZ but not Bethe ansatz?, open spin chains, higher
spin representations, algebras of higher rank; Bethe equations (not necessarily with
derivations), connections to Lie algebra theory.

References: [40, §8, 10] [41, §3.3]
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E Quantum Groups

The last part of the proseminar discusses the mathematical foundations of the Heisen-
berg spin chain model in terms of algebra.

E1 Affine and Graded Algebras

Date: 11 May, 11:30 Student: Jorrit Bosma Tutor: Dr. Joseph Renes

Description: This talks extends the concept of finite-dimensional Lie algebras in two
important ways: For the deeper understanding of integrable systems we will need affine
Kac–Moody algebras. Another relevant generalisation is given by Lie superalgebras
which play a central role in supersymmetry. Both of them are relevant for string theory.

Goals: loop algebra g[u, u−1] and affine Kac–Moody algebra, evaluation representa-
tions, evaluation/spectral parameter; tensor product of two evaluation representations,
example of 2 × 2 in sl(2)[u, u−1], reducibility of tensor products for spectral parame-
ters equal or different; graded matrices, classical superalgebras gl(N |M), osp(N |M),
definition graded Lie-algebra.

References: [46, §7] summary in [47, §2.2] [48] [49, §12, 20, 21, App] [50] [41, §6.1]
[51] [52, Ch. 1] [53]

E2 Classical r-Matrices

Date: 18 May, 9:00 Student: — Tutor: Prof. Niklas Beisert

Description: This talks start the algebraic description of integrable systems. Lie alge-
bras are a linearised form of Lie groups and therefore much easier to handle. Similarly,
classical r-matrices are linearised versions of quantum R-matrices.

Goals: introduction of classical r-matrices, e.g. via su(N) fundamental R-matrix R(u−
v) = ((u− v)I + iP )/((u− v) + i); expansion for large u− v yields I + ir+ . . . with (rep-
resentation of) classical r-matrix r(u− v) = (P − I)/(u− v). P − I is the representation
of the quadratic Casimir operator t = JA ⊗ JA;

definition of classical r-matrix r(u) ∈ g ⊗ g, where u ∈ C and g a Lie algebra; classical
Yang–Baxter equations for r(u) as limit of the quantum YBE for R(u).

classification of classical r-matrices: rational, trigonometric, elliptic solutions; twists
with automorphisms σ not that important.

r-matrix with parameter r(u) as r-matrix of the loop algebra in evaluation representation,
e.g.: r(u − v) = t/(u − v) =

∑∞
n=0 u

−1−n
1 un2 t =

∑∞
n=0(u

−1−nJA) ⊗ (vnJA) as an element
of u−1g[u−1]⊗ g[u].
References: [54, §3, 2], [55, 56] [41, §6.2]
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E3 Quantum Algebra

Date: 18 May, 10:15 Student: Andrea Pelloni Tutor: Dr. Johannes Brödel

Description: This talk introduces the concept of quantum algebras. A quantum algebra
contains a Lie algebra g, the associated Lie group G as well as all products and sums
of these elements. This makes them ideally suited for the formulation of quantum
mechanics, in particular for quantum integrable systems.

Goals: universal enveloping algebra U(g) of a Lie algebra g; relevance in physics?

U(g) as a Hopf algebra; definitions; interpretation of the product (products of quantum
operators) as well as the coproduct (determination of a tensor product of representa-
tions);

quantum deformation Uq(g) at the example of g = sl(2); product, coproduct?

Example: tensor product 2× 2 = 3+ 1 in g = sl(2) compared to Uq(g); same decompo-
sition to 3 + 1, but different subspaces.

References: [54, §4, 6] [57, §VI, VII] summary in [47, §2] [41, §6.3]

E4 Quantum R-Matrices

Date: 18 May, 11:30 Student: Hansueli Jud Tutor: Dr. Johannes Brödel

Description: This talks discusses the algebraic description of quantum integrable sys-
tems. For the latter the quantum algebras have a special property, they possess an
R-matrix and they are quasi-triangular.

Goals: 2 × 2 tensor product decomposition for evaluation representations in loop g =
sl(2)[u, u−1] or affine sl(2); reducibility? same example for Yangian or quantum affine.

coproduct and opposite coproduct: cocommutativity, quasi-cocommutativity, R-Matrix;
quasi-triangularity; Yang–Baxter equation;

connections to algebraic Bethe ansatz.

References: [54, §4, 7.5] [40] [41, §6.4]

13



References

[1] H. Georgi, “Lie Algebras in Particle Physics”, Addison-Wesley (1999).

[2] S. Sternberg, “Group Theory and Physics”, Cambridge University Press (1995),
Cambridge, UK.

[3] J. F. Cornwell, “Group Theory in Physics: An Introduction”, Academic Press (1997).

[4] M. E. Peskin and D. V. Schroeder, “An Introduction to Quantum Field Theory”, Westview
Press (1995), Boulder, CA, USA.

[5] J. B. Zuber, “Invariances in Physics and Group Theory”,
http://www.lpthe.jussieu.fr/ zuber/Cours/InvariancesGroupTheory-2014.pdf.

[6] H. F. Jones, “Groups, Representations and Physics”, CRC Press (1998).

[7] C. Itzykson and J. B. Zuber, “Quantum Field Theory”, McGraw-Hill (1980), New York,
USA.

[8] P. Ramond, “Field Theory – A Modern Primer”, Westview Press (1990), Boulder, CA,
USA.

[9] M. Srednicki, “Quantum field theory”, Cambridge University Press (2007), Cambridge,
UK.

[10] T. Banks, “Modern Quantum Field Theory: A Concise Introduction”, Cambridge
University Press (2008), Cambridge, UK.

[11] A. Zee, “Quantum Field Theory in a Nutshell”, Princeton University Press (2010),
Princeton, NJ, USA.

[12] L. H. Ryder, “Quantum Field Theory”, Cambridge University Press (1996), Cambridge,
UK.

[13] M. Kaku, “Quantum Field Theory – A Modern Introduction”, Oxford University Press
(1993), New York, USA.

[14] R. A. Bertlmann, “Anomalies in Quantum Field Theory”, Oxford University Press (1996),
Oxford, UK.

[15] J. Zinn-Justin, “Quantum Field Theory and Critical Phenomena”, Oxford University Press
(1989).

[16] I. J. R. Aitchison, “Supersymmetry in Particle Physics. An Elementary Introduction”.

[17] S. P. Martin, “A Supersymmetry primer”,
Adv. Ser. Direct. High Energy Phys. 21, 1 (2010), hep-ph/9709356.

[18] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions”,
Nucl. Phys. B72, 461 (1974).

[19] S. Coleman, “Aspects of Symmetry”, Cambridge University Press (1985), Cambridge,
UK.

[20] A. V. Manohar, “Large N QCD”, hep-ph/9802419.

[21] L. Brink, J. H. Schwarz and J. Scherk, “Supersymmetric Yang-Mills Theories”,
Nucl. Phys. B121, 77 (1977).

[22] N. Beisert, “The Dilatation operator of N=4 super Yang-Mills theory and integrability”,
Phys. Rept. 405, 1 (2005), hep-th/0407277.

[23] S. Kovacs, “N=4 supersymmetric Yang-Mills theory and the AdS/SCFT correspondence”,
hep-th/9908171.

14

http://www.lpthe.jussieu.fr/~zuber/Cours/InvariancesGroupTheory-2014.pdf
http://dx.doi.org/10.1142/9789814307505_0001
http://arxiv.org/abs/hep-ph/9709356
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://arxiv.org/abs/hep-ph/9802419
http://dx.doi.org/10.1016/0550-3213(77)90328-5
http://dx.doi.org/10.1016/j.physrep.2004.09.007
http://arxiv.org/abs/hep-th/0407277
http://arxiv.org/abs/hep-th/9908171


[24] K. Becker, M. Becker and J. H. Schwarz, “A First Course in String Theory”, Cambridge
University Press (2007), Cambridge, UK.

[25] A. A. Tseytlin, “Review of AdS/CFT Integrability, Chapter II.1: Classical AdS5 × S5 string
solutions”, arxiv:1012.3986.

[26] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field theories,
string theory and gravity”, Phys. Rept. 323, 183 (2000), hep-th/9905111.

[27] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS/CFT
correspondence”, hep-th/0201253.

[28] J. M. Maldacena, “Lectures on AdS/CFT”, hep-th/0309246.

[29] H. Nastase, “Introduction to AdS-CFT”, arxiv:0712.0689.

[30] J. Polchinski, “Introduction to Gauge/Gravity Duality”, arxiv:1010.6134.

[31] P. Di Francesco, P. Mathieu and D. Sénéchal, “Conformal Field Theory”, Springer-Verlag
(1997), New York, USA.

[32] N. Beisert, “Review of AdS/CFT Integrability, Chapter VI.1: Superconformal Symmetry”,
arxiv:1012.4004.

[33] J. A. Minahan and K. Zarembo, “The Bethe ansatz for N=4 superYang-Mills”,
JHEP 0303, 013 (2003), hep-th/0212208.

[34] J. A. Minahan, “Review of AdS/CFT Integrability, Chapter I.1: Spin Chains in N=4 Super
Yang-Mills”, arxiv:1012.3983.

[35] A. Rej, “Integrability and the AdS/CFT correspondence”, J. Phys. A42, 254002 (2009),
arxiv:0907.3468.

[36] P. Vieira, “Integrability in AdS/CFT”,
http://faraday.fc.up.pt/cfp/phd-thesis-files/pedrophd.pdf.

[37] H. Bethe, “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen
Atomkette”, Z. Phys. 71, 205 (1931).

[38] M. Karbach and G. Müller, “Introduction to the Bethe ansatz I”,
Computers in Physics 11, 36 (1997), cond-mat/9809162.

[39] R. I. Nepomechie, “A Spin Chain Primer”, Int. J. Mod. Phys. B13, 2973 (1999),
hep-th/9810032.

[40] L. D. Faddeev, “How Algebraic Bethe Ansatz works for integrable model”,
hep-th/9605187.

[41] N. Beisert, “Integrability in QFT and AdS/CFT”,
http://www.itp.phys.ethz.ch/research/qftstrings/archive/13HSInt.

[42] M. Staudacher, “Review of AdS/CFT Integrability, Chapter III.1: Bethe Ansätze and the
R-Matrix Formalism”, arxiv:1012.3990.

[43] L. D. Faddeev, “Algebraic aspects of Bethe Ansatz”, Int. J. Mod. Phys. A10, 1845 (1995),
hep-th/9404013.

[44] M. Wheeler, “Free fermions in classical and quantum integrable models”,
arxiv:1110.6703.

[45] M. de Leeuw and C. Candu, “Introduction to Integrability”, lecture notes at ETH Zurich,
2013, http://www.itp.phys.ethz.ch/research/qftstrings/archive/13FSInt.

[46] V. G. Kac, “Infinite Dimensional Lie Algebras”, Cambridge University Press (1990),
Cambridge, UK.

15

http://arxiv.org/abs/1012.3986
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://arxiv.org/abs/hep-th/0201253
http://arxiv.org/abs/hep-th/0309246
http://arxiv.org/abs/0712.0689
http://arxiv.org/abs/1010.6134
http://arxiv.org/abs/1012.4004
http://dx.doi.org/10.1088/1126-6708/2003/03/013
http://arxiv.org/abs/hep-th/0212208
http://arxiv.org/abs/1012.3983
http://dx.doi.org/10.1088/1751-8113/42/25/254002
http://arxiv.org/abs/0907.3468
http://faraday.fc.up.pt/cfp/phd-thesis-files/pedrophd.pdf
http://dx.doi.org/10.1007/BF01341708
http://arxiv.org/abs/cond-mat/9809162
http://dx.doi.org/10.1142/S0217979299002800
http://arxiv.org/abs/hep-th/9810032
http://arxiv.org/abs/hep-th/9605187
http://www.itp.phys.ethz.ch/research/qftstrings/archive/13HSInt
http://arxiv.org/abs/1012.3990
http://dx.doi.org/10.1142/S0217751X95000905
http://arxiv.org/abs/hep-th/9404013
http://arxiv.org/abs/1110.6703
http://www.itp.phys.ethz.ch/research/qftstrings/archive/13FSInt


[47] N. Beisert and F. Spill, “The Classical r-matrix of AdS/CFT and its Lie Bialgebra
Structure”, Commun. Math. Phys. 285, 537 (2009), arxiv:0708.1762.

[48] J. Fuchs and C. Schweigert, “Symmetries, Lie Algebras and Representations”,
Cambridge University Press (1997), Cambridge, UK.

[49] J. F. Cornwell, “Group theory in Physics. Vol. 3: Supersymmetries and Infinite
Dimensional Algebras”, Academic Press (1989).

[50] L. Frappat, A. Sciarrino and A. Sorba, “Dictionary on Lie Algebras and Superalgebras”,
Academic Press (2000), Oxford, UK.

[51] R. W. Carter, “Lie Algebras of Finite and Affine Type”, Cambridge (2005).

[52] S.-J. Cheng and W. Wang, “Dualitites and Representations of Lie Superalgebras”,
American Mathematical Society (2013).

[53] D. Hernandez, “An Introduction to Kac-Moody Algebras”, Lecture Notes from CTQM
Master Class, Aarhus University, Denmark, 2006,
https://hal.archives-ouvertes.fr/cel-00112530/document.

[54] V. Chari and A. Pressley, “A Guide to Quantum Groups”, Cambridge University Press
(1994).

[55] Belavin and Drinfel’d, “Solutions of the classical Yang-Baxter equation for simple Lie
algebras”, Func. Anal. Appl. 16, 159 (1982).

[56] A. Stolin, “On rational solutions of Yang-Baxter equations. Maximal orders in loop
algebra”, Comm. Math. Phys. 141, 533 (1991).

[57] C. Kassel, “Quantum Groups”, Springer (1995).

16

http://arxiv.org/abs/0708.1762
https://hal.archives-ouvertes.fr/cel-00112530/document
http://dx.doi.org/10.1007/BF01081585
http://dx.doi.org/10.1007/BF02102814

	A Yang–Mills Theory
	A1 Lie Groups
	A2 Classical Yang–Mills Theory
	A3 Quantum Field Theory
	A4 Regularisation and Renormalisation
	A5 Gauge Fixing
	A6 Yang–Mills Quantisation

	B Applications
	B1 Asymptotic Freedom and Confinement
	B2 Higgs Mechanism
	B3 Grand Unification
	B4 Supersymmetric Yang–Mills Theory

	C AdS/CFT Correspondence
	C1 Planar Limit
	C2 N=4 Supersymmetric Yang–Mills Theory
	C3 AdS/CFT Correspondence
	C4 Conformal Field Theory
	C5 Dilatation Operator

	D Integrable Spin Chains
	D1 Heisenberg Spin Chain
	D2 Coordinate Bethe Ansatz
	D3 Algebraic Bethe Ansatz
	D4 More General Chains

	E Quantum Groups
	E1 Affine and Graded Algebras
	E2 Classical r-Matrices
	E3 Quantum Algebra
	E4 Quantum R-Matrices


